Вышедшие номера
Nonadiabatic superconductivity in fullerene-based materials
Grimaldi C.1, Cappelluti E.2, Pietronero L.2, Strassler S.1
1Departement de Microtechnique --- IPM, Ecole Polytecnique Federale Lausanne, Lausanne, Switzerland
2Department of Physics, University "La Sapienza" and INFM, Rome 1, Italy
Выставление онлайн: 17 февраля 2002 г.

Fullerene compounds have phonon frequencies up to omegamax=0.2 eV and Fermi energy of order EF=0.3 eV. It is therefore expected that the adiabatic parameter lambdaomegaph/EF, where lambda is the electron-phonon coupling constant and omegaph is a typical phonon frequency, is not negligible a priori and that the conventional phonon-mediated theory of superconductivity does not longer apply. Here we discuss how the conventional theory is inconsistent with a number of experimental data and provide a generalization of the theory in order to include nonadiabatic electron-phonon effects. We show that the inclusion of nonadiabatic channels in the electron-phonon interaction is a key element for the high values of Tc in these materials. We provide several predictions on superconducting and normal state properties of fullerene compounds susceptible to be tested experimentally.
  1. A.B. Migdal. Sov. Phys. JETP 7, 996 (1958)
  2. G.M. Eliashberg. Sov. Phys. JETP 11, 696 (1960)
  3. O. Gunnarsson. Rev. Mod. Phys. 69, 575 (1997)
  4. Y.J. Uemura et al. Nature (London) 352, 605 (1991)
  5. S.K. Watson et al. Phys. Rev. B55, 3866 (1997)
  6. J.H. Schon, Ch. Kloc, B. Batlogg. Nature (London) 408, 549 (2000)
  7. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu. Nature (London) 410, 63 (2001)
  8. M. Schluter et al. Phys. Rev. Lett. 68, 526 (1992); M. Schluter et al. J. Phys. Chem. Solid 53, 1473 (1992); J.C.R. Faulhaber et al. Phys. Rev. B48, 661 (1993); C.M. Varma et al. Science 254, 989 (1991); V.P. Antropov et al. Phys. Rev. B48, 7651 (1993); N. Breda et al. Chem. Phys. Lett. 286, 350 (1998)
  9. M.S. Fuhrer, K. Cherrey, A. Zettl, M.L. Cohen, V.H. Crespi. Phys. Rev. Lett. 83, 404 (1999)
  10. J.P. Carbotte. Rev. Mod. Phys. 62, 1027 (1990)
  11. E. Cappelluti, C. Grimaldi, L. Pietronero, S. Strassler. Phys. Rev. Lett. 85, 4771 (2000)
  12. C. Grimadli, L. Pietronero, S. Strassler. Phys. Rev. Lett. 75, 1158 (1995)
  13. L. Pietronero, S. Strassler, C. Grimaldi. Phys. Rev. B52, 10 516 (1995); ibid. 52, 10 530 (1995)
  14. M.L. Kulic. Phys. Rep. 338, 1 (2000) and references therein
  15. P.J. Benning et al. Science 252, 1417 (1991)
  16. C. Grimaldi, E. Cappelluti, L. Pietronero. Europhys. Lett. 42,667 (1998)
  17. D. Fay. J. Appel. Phys. Rev. B20, 3705 (1979); ibid 22, 1461 (1980)
  18. E. Cappelluti, C. Grimaldi, L. Pietronero. Phys. Rev. B (to be published)
  19. M. Scattoni, C. Grimaldi, L. Pietronero. Europhys. Lett. 47, 588 (1999)
  20. J.M. An, W.E. Pickett. Phys. Rev. Lett. 86, 4366 (2001)
  21. A. Perali, C. Grimaldi, L. Pietronero. Phys. Rev. B58, 5736 (1998).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.