Феномен образования круговых колец на заснеженном ледовом поле озера Байкал

© В.К. Балханов, Ю.Б. Башкуев, В.Б. Хаптанов

Отдел физических проблем Бурятского научного центра СО РАН, 670047 Улан-Удэ, Россия e-mail: ballar@yandex.ru

(Поступило в Редакцию 18 августа 2009 г. В окончательной редакции 2 февраля 2010 г.)

На космических снимках ледовой поверхности озера Байкал обнаружены темные кольца диаметром $\sim 7-8$ km. Можно дать физическую интерпретацию данного феномена, предположив, что формирование колец связано с выбросами теплого природного газа из осадочной толщи дна Байкала. Поднимаясь к поверхности, природный газ охлаждается, но успевает прогреть окружающую холодную воду. В результате в толще воды образуется конвекция в виде тора вокруг выброса природного газа, которая доносит теплую воду до поверхности (нижней кромки льда) в стороне от столбца природного газа. Благодаря теплопроводности тепло доходит до верхней кромки льда, где снег начинает интенсивно таять. В результате на заснеженном льду образуется проталина в виде кольца.

Введение

01:03

Озеро Байкал в геологическом отношении представляет собой озеро — грабен — участок земной коры, ограниченный круто наклоненными разрывами, приуроченный к рифтовой зоне (рифт — крупная линейная тектоническая структура земной коры протяженностью сотни-тысячи километров). Рифты характеризуются повышенным тепловым потоком и сейсмической активностью. Повышенная температура приводит к интенсивному газообразованию. Выходы природного газа со дна озера летом наблюдаются благодаря поднимающимся на поверхность пузырям и в зимнее время — образованию "проталин" (свободной ото льда поверхности воды) размером 0.5-100 m в поперечнике. Заполненные снегом проталины являются источником повышенной опасности для автомобилей. Помимо таких относительно небольших проталин на космических снимках озера Байкал обнаружены темные кольца аномально большого размера диаметром $\sim 7-8 \,\mathrm{km}$ (рис. 1) [1]. Из-за значительного размера увидеть эти кольца со льда и даже с горных хребтов, окружающих котловину озера, практически невозможно. В апреле 2009 г. кольца были обнаружены западнее мыса Нижнее Изголовье полуострова Святой Нос (рис. 1, точка 1) и в южной оконечности Байкала (рис. 1, точка 2). На рис. 2 и 3 кольца "привязаны" к батиметрической карте Байкала, где также указаны географические координаты центров колец [2] (батиметрические карты — географические карты, отображающие подводный рельеф при помощи изобат, дополненные отметками глубин).

Целью настоящей работы является физическое объяснение образования колец на поверхности льда в результате конвекции всей толщи воды вокруг выброса природного газа, т.е. определение распределения температуры на поверхности, у нижней кромки льда. То, что в процессе образования колец определяющую роль играют именно тепловые потоки, видно из рис. 4, где показано, как в результате нагрева нарушена прочность льда и он раскрошен на ледяные блоки разного размера [3].

Вода озера Байкал характеризуется тем, что в весенний период температура по всей глубине практически не меняется и составляет обычно $T_0 = 3.2-3.4$ °C. Только вблизи поверхности, от глубины 150–200 m температура плавно уменьшается почти до нуля на поверхности. Возникающий градиент температуры столь незначителен, что конвекции воды не возникает (не рассматриваются внутренние течения толщи воды, не

Рис. 1. Круговые кольца *I* (возле полуострова Святой Нос) и *2* (возле южной оконечности Байкала) на озере Байкал. Снимок от 4.04.2009 [1].

Рис. 2. Разрез кольца по широте на батиметрической карте возле полуострова Святой Нос. *1* и 5 — внешний край кольца, *2* и 4 — внутренний край кольца, *3* — центр кольца. Наверху даны географические координаты центра кольца.

Рис. 3. Разрез кольца по долготе на батиметрической карте возле южной оконечности Байкала. Цифрами обозначены: *1* и *5* — внешний край кольца, *2* и *4* — внутренний край кольца, *3* — центр кольца. Наверху даны географические координаты центра кольца.

Рис. 4. Разрушение ледяного поля в результате прогрева льда возле южной оконечности оз. Байкал. Фотография с борта Международной космической станции от 25.04.2009 [3].

связанные с температурной конвекцией). Таким образом, рассатриваемая задача существенно отличается от известной задачи конвекции Бенара—Рэлея.

3* Журнал технической физики, 2010, том 80, вып. 9

Теоретическое описание

Интенсивное газообразование можно описать как свободно поднимающуюся в толще холодной воды теплую ламинарную струю природного газа. Струя несет поток тепла (энергия в единицу времени)

$$Q = \rho_s C_p T V r^2 = \text{const.} \tag{1}$$

Здесь ρ_s — плотность смеси из байкальской воды и природного газа; C_p — теплоемкость смеси при постоянном давлении; T — абсолютная температура, отсчитываемая от температуры окружающей холодной воды; V — скорость всплытия струи; r — радиус поперечного сечения струи. Стационарная динамика всплытия струи описывается следующим уравнением [4]:

$$(V \cdot \nabla)V = -\nabla \frac{P}{\rho_s} - \beta_s g T + \nu_s \nabla^2 V.$$
 (2)

Здесь ∇ — оператор Набла, P — давление, β_s — температурный коэффициент ресширения смеси, v_s — вязкость смеси, g — ускорение свободного падения. Это уравнение получается из стационарного уравнения Навье—Стокса

$$(V \cdot \nabla)V = -\nabla \frac{P}{\rho_s} + \nu_s \nabla^2 V + g \tag{3}$$

следующим образом. Пусть P_0 и ρ_0 — равновесные значения, тогда

$$P = P_0 + \rho_s gz, \tag{4}$$

где к равновесному значению давления добавили гидростатическое давление, здесь *z* — высота, отсчитываемая от дна озера. При получении тепла плотность жидкости (смеси) меняется, причем

$$\rho_s = \rho_{s0} - \rho_{s0}\beta_s T. \tag{5}$$

При подстановке (4) и (5) в (3), с учетом того, что поправки к равновесным значениям малы, приходим к уравнению (2), где убран индекс "0".

Поскольку все члены уравнения (2) одного порядка, то

$$\frac{V^2}{z} \propto \beta_s g T \propto v_s \frac{V}{r^2}.$$
 (6)

Из (1) и (6) следует, что струя всплывает в виде фигуры вращения с осью *z*, причем (соотношения Зельдовича [7, стр. 310]):

$$\tau \propto \sqrt{z}, \quad V = \text{const}, \quad T \propto \frac{1}{z}.$$
 (7)

Выражения (7) будут являться граничными условиями для задачи определения температуры окружающей воды, особенно интересной для нас. Ламинарная струя выходит из осадочной толщи дна из отверствия некоторого конечного размера, минимальный размер

Рис. 5. Качественная картина всплытия теплой струи природного газа и конвективное течение воды вокруг струи в виде сплюснутого тора. Заштрихованный квадрат внизу восходящей струи обозначает размер источника.

которого можно найти из выражения (1) и условия $\rho_s V = \max$ [5, стр. 231]. Закономерность $r \propto \sqrt{z}$ удобно конкретизировать и записать в следующем виде:

$$r = \sqrt{Dz}.$$
 (8)

Радиальную переменную, описывающую координаты в плоскости xy, вне ламинарной струи, будем обозначать как R. Для параметров, описывающих байкальскую воду, свободную от природного теплого газа, индекс s не выписываем.

Неоднородное распределение температуры в воде, вызванное присутствием теплой струи природного газа, выводит окружающую жидкость из состояния механического равновесия. Возникает конвективное течение, которое в силу симметрии приобретает вид сплюснутого тора. Картина описанного процесса качественно показана на рис. 5, где стрелками указаны направления вращения потока воды. Распределение потенциального поля скоростей и температуры конвективного течения описывается следующей системой уравнений:

$$v(\nabla^2)^2 V = \beta g \nabla^2 T - \beta \nabla (g \cdot \nabla T), \qquad (9)$$

$$(V \cdot \nabla)T_0 = \chi \nabla^2 T, \quad \nabla^2 T_0 = 0.$$
 (10)

Здесь χ — теплоповодность, T_0 — температура неподвижной жидкости. Вывод этих уравнений аналогичен выводу системы уравнений, описывающих конвекцию Бенара—Рэлея [4, стр. 315], и производится следующим образом.

Во-первых, имеется уравнение (3), где убран индекс *s*. Кроме того, добавляется стационарное уравнение тепло-проводности

$$(V \cdot \nabla)T = v\nabla^2 T \tag{11}$$

и условие потенциальности течения:

$$\nabla \cdot V = 0. \tag{12}$$

При конвекции температура неначительно меняется, поэтому необходимо T заменить на $T_0 + T$, где новое T — малая добавка к T_0 , скорость V при конвективном течении также является малой величиной. Поэтому в уравнении

$$(V \cdot \nabla)V = -\nabla \frac{P}{\rho} - \beta g T + v \nabla^2 V$$
(13)

можно пренебречь квадратом скорости. С учетом замены T на $T_0 + T$ уравнение (10) принимает следующий вид:

$$(V \cdot \nabla)T_0 + (V \cdot \nabla)T = v\nabla^2 T_0 + v\nabla^2 T.$$

Пренебрегая малой величиной $(V \cdot \nabla)T$ и отделяя величины разного порядка, приходим к уравнениям (10). Далее подействуем на уравнение (13) оператором $\nabla \times (\nabla \times ...)$. Используя правила векторного анализа и уравнение (12), в итоге приходим к соотношению (9).

Из всего набора очевидных граничных условий [4, стр. 306] нам понадобится соотношение

$$T\left(\sqrt{x^2 + y^2} = r, z = 0\right) \propto \frac{1}{z}.$$
 (14)

Из (9) имеем следующие уравнения в плоскости xy:

$$v(\nabla^2)^2 V_R = -\beta g \nabla_R \frac{\partial T}{\partial z},\tag{15}$$

и проекция на ось z:

$$v(\nabla^2)^2 V_z = \beta g \nabla_z^2 T. \tag{16}$$

Здесь $\nabla^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2$.

Вблизи поверхности z = h компонента V_R почти не зависит от z, компонента V_z настолько мала, что ее можно вообще опустить. Тогда из (15) и (16) следует, что функция T(R, z) зависит от координаты z следующим образом:

$$T(R, z) = u(R) + v(R)z.$$
 (17)

Поскольку температура T(R, z) отсчитывается от значения T_0 , то в первом приближении можно принять T(R, z = h) = 0. Отсюда видно, что функции u(R) и v(R) имеют разные знаки. Кроме того, в месте соприкосновения воды со струей, когда $R = r = \sqrt{Dz}$, должно выполняться граничное условие (14). Этого можно добиться, если T(R, z) выбрать в следующем виде:

$$T(R, z) = ah^2 T_{\rm m} \left(\frac{1}{R^2} - b \frac{hz}{R^4}\right).$$
 (18)

Постоянные a, b и T_m будут определены ниже.

При написании решения в виде (18) использовался общий метод, при котором решения системы уравнений, подобные (9) и (10), ищутся в таком виде, чтобы удовлетворять граничным условиям задачи [6].

Решение (18) обладает замечательной особенностью — зависимость T(R, z = h) имеет максимум. Из этого следует, что в точке максимума

$$R_{\rm m} = \sqrt{2bh} \tag{19}$$

И

$$a = 4b. \tag{20}$$

Так, для кольца на рис. 2 $R_{\rm m} = 2.78$ km и h = 1.46 km, откуда b = 1.81 и a = 7.25. Чтобы установить смысл величины D в формуле (8), положим, что в месте соприкосновения воды со струей температура $T_s = 0$ (лед и снег не нем не тают). В точке максимума температура $T_{\rm m} = 4^{\circ}$ С (лед еще не тает, а снег уже растаял). Тогда, подставив $R = \sqrt{Dz}$ в (18), для D получим квадратное уравнение, наименьшее решение которого будет

$$D = 4.04 \,\mathrm{km}.$$
 (21)

Приведем следующие значения, относящиеся к кольцу № 2 (рис. 3):

$$R_{\rm m} = 2.76 \,\mathrm{km}$$
 и $h = 1.05 \,\mathrm{km},$
 $b = 3.45, a = 13.8$ и $D = 5.17 \,\mathrm{km}.$

Они существенно отличаются от аналогичных значений для величин кольца № 1 (рис. 2). Такое различие, по-видимому, связано как с используемым приближением при решении уравнения (6), так и с различием рельефа дна для обоих колец. Скудные экспериментальные данные (фактически использовались только космичекие снимки и батиметрическая карта) не позволяют пока провести более подробный анализ феномена образования гигантских колец на льду.

Заключение

Установлено, что образование колец на ледовой поверхности озера Байкал связано с гигантской конвекцией толщи воды из-за выброса теплого природного газа и осадочного дна озера. Конвекция в виде тора описывается совместными решениями уравнений Навье-Стокса и уравнения теплопроводности. Дано качественное решение этих уравнений вблизи поверхности воды. Из полученного решения следует, что поднимаясь к поверхности, природный газ охлаждается, но успевает прогреть окружаюую холодную воду. В результате в толще воды образуется конвекция в виде тора вокруг выброса природного газа, которая доносит теплую воду до поверхности (нижней кромки льда) в стороне от столба природного газа. Благодаря теплопроводности тепло доходит до верхней кромки льда, где снег начинает интенсивно таять. В результате на заснеженном льду образуется проталина в виде кольца.

Работа частично поддержана грантами РФФИ № 08-01-98006, 08-02-98007, 08-05-98038, интеграционным проектом СОРАН № 56 и Фондом содействия сохранению озера Байкал.

Список литературы

- [1] Веб-сервис MIRAVI < http://miravi.eo.esa.int/en/>.
- [2] Карта оз. Байкал. Главное управление навигации и океанографии Министерства обороны СССР, 1992.
- [3] <http://eol.jsc.nasa.gov/scripts.sseop.photo.pl?mission=ISS019 &roll= E&frame=10556>.
- [4] Ладау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1988.
 736 с.
- [5] Компанеец А.С. Курс теоретической физики. Т. 2. Статистические законы. М.: Просвещение, 1974. 480 с.
- [6] Конвективные течения: Сб. науч. трудов. Пермь: ПГПИ, 1989. 120 с.