16

Флюидный синтез и структура новой полиморфной модификации нитрида бора

© В.В. Покропивный, А.С. Смоляр, Л.И. Овсянникова, А.В. Покропивний, В.А. Куц, В.И. Ляшенко, Ю.В. Нестеренко

Институт проблем материаловедения им. И.Н. Францевича НАН Украины, Киев, Украина

E-mail: avilon57@mail.ru

(Поступила в Редакцию 27 июля 2012 г. В окончательной редакции 2 октября 2012 г.)

Методом сверхкритического флюидного синтеза получена новая не установленная ранее фаза нитрида бора с твердостью 0.41–0.63 GPa. Наличие новой фазы подтверждают рентгеновские спектры и спектры инфракрасного поглощения, где отмечены новые рефлексы и полосы. Основной рефлекс рентгенограммы — d = 0.286-0.291 nm, характерная полоса в инфракрасном спектре поглощения расположена при 704 сm⁻¹. Рентгенограмма, экспериментальный и теоретический спектры инфракрасного поглощения показывают, что новая синтезированная фаза нитрида бора может быть кластерным кристаллом (пространственная группа 211) с простой кубической решеткой, в узлах которой расположены каркасные кластеры фуллереноподобной морфологии $B_{24}N_{24}$ точечной симметрии O.

Работа выполнена в рамках целевой программы Ц2-02 НАН Украины при поддержке Фонда гражданских исследований и развития (грант CRDF UE2-2456-KV-02).

1. Введение

Нитрид бора (BN) как изоморфный аналог углерода кроме обычных модификаций — графитоподобной гексагональной (*h*-BN), турбостратной (*t*-BN), ромбоэдрической (*r*-BN), а также вюртцитной (*w*-BN) и сфалеритной (*c*-BN) — имеет и другие полиморфные модификации [1]. В частности, необычные модификации BN, промежуточные по плотности между *h*-BN ($\rho = 2.28 \text{ g/cm}^3$) и *c*-BN ($\rho = 3.5 \text{ g/cm}^3$), были синтезированы Бацановым [2], Акаши [3], Соколовской [4] и Вангом [5]. Они получены в существенно неравновесных условиях в малых количествах, их структура до сих пор дискуссионна.

Ключ к расшифровке подобных полиморфных модификаций дан в работах [6,7], в которых впервые были рассмотрены полые фуллереноподобные молекулы нитрида бора B₁₂N₁₂, B₂₄N₂₄ в качестве структурных единиц кластерных кристаллов с простой кубической, гранецентрированной кубической, объемно центрированной кубической и алмазной решетками, в узлах которых вместо атомов расположены фуллереноподобные кластеры. Успешность этого подхода продемонстрирована в работах [8,9], в которых было теоретически показано, что давно известный так называемый кубический графит — кристалл с простой кубической решеткой. В ее узлах расположены молекулы фуллерена С₂₄. Полиморфная модификация BN, так называемая Е-фаза (explosive), — цеолит с решеткой типа алмаза, в узлах которой расположены молекулы фуллерена В₁₂N₁₂. Позже фаза углерода (простой кубический фуллерит —

ПКФ — С24) и полиморфная модификация нитрида бора (гипералмазный фулборенит — ГАФ — В₁₂N₁₂ [9-11] были экспериментально получены нами флюидным способом.

Мы предполагаем, что у нитрида бора помимо исследованных нами существуют и другие модификации, структурными единицами которых являются каркасные кластеры. Выдвинута концепция существования ряда кристаллообразующих кластеров типа *X_nY_n*, из которых можно конструировать цеолитоподобные кристаллы по типу ранее рассмотренных Е-фазы и кубического графита на основе соединений элементов $A^{IV}B^{IV}$, $A^{III}B^{V}$ и А^{II}В^{VI}, в частности нитрида бора [12]. В масс-спектрах нитрида бора, расплавленного в дуговом разряде, были обнаружены молекулы фуллерена В24N24 [13]. Кроме того, были синтезированы кластеры BN и с другими массовыми числами [14]. Вопросы стабильности и электронная структура этих кластеров, в частности изомеров кластера В₂₄N₂₄, изучались в [15,16]. Также было проведено теоретическое исследование предсказанных структур ПКФ: В₂₄N₂₄ и В₁₂N₁₂ [17]. Моделирование показало, что фаза ПКФ В24N24 может быть гетерополярным полупроводником или диэлектриком с объемным модулем, сравнимым с объемным модулем кубического нитрида бора.

Есть основания предполагать, что каркасные кластеры BN могут служить структурными единицами нитридборных кластерных кристаллов, подобных уже исследованному ГАФ $B_{12}N_{12}$. Целью настоящей работы является продолжение исследований свойств и структуры новых фаз нитрида бора, полученных методом сверхкритического флюидного синтеза.

Номера образцов	Давление, GPa	Температура, °С	Исходный реагент	Методы исследования		
1-3	Электроразряд	ное нагружение	<i>h</i> -BN	Рентгенография		
4	0.05	430	t-BN	ИК-спектроскопия		
5	0.1	710	<i>h</i> -BN	Рентгенография		
10-12	0.02	740	t-BN	Рентгенография и ИК-спектроскопия		

Таблица 1. Условия получения и методы исследования образцов

Примечание. Образцы № 4, 5, 10–12 получены методом флюидного синтеза.

2. Методика эксперимента

Продукты нитрида бора получались методом флюидного синтеза, который является частным случаем сверхкритического флюидного синтеза, на газостате высокого давления при 0.02-0.1 GPa и температурах $430-740^{\circ}$ C в газовых средах азота и паров воды. В качестве исходных реагентов использовался серийный гексагональный графитоподобный *h*-BN (Запорожский завод), а также сильно неупорядоченный турбостратный *t*-BN, изготовленный нами.

Реактор представляет собой вертикальную цилиндрическую водоохлаждаемую камеру высокого давления с наружным электрообогревом. В ее центре расположен тигель, в который помещаются исходные реагенты. В процессе флюидного синтеза газ переходит в сверхкритическое состояние (флюид), при котором его плотность приближается к плотности жидкости, а вязкость остается такой же малой, как вязкость газа. Флюид легко проникает в кристаллическую решетку нитрида бора и становится эффективным реагентом, растворителем и катализатором. Предполагается, что в процессе синтеза исходный нитрид бора сначала растворяется флюидом, а затем перекристаллизуется в виде новой фазы BN. Продукты реакции частично остаются в тигле, а частично переносятся и осаждаются из газовой фазы на стенках охлаждаемой камеры. Продукты в тигле и продукты на стенках камеры различаются морфологией и химическим составом, так как механизм твердофазной химической реакции в тигле отличается от механизма газофазного осаждения на стенках камеры [18].

Из гексагонального и турбостратного нитрида бора были получены продукты синтеза в виде черных поликристаллических осадков размером 0.2–1.5 mm новой неустановленной фазы BN в микродисперсной серой основной массе остаточного непрореагировавшего *h*-BN, или *t*-BN.

Кроме флюидного способа новая фаза была также получена при электроразрядном нагружении гексагонального нитрида бора. Три образца, полученные при разной степени нагрузки, содержали новую фазу BN и исходный *h*-BN, который остался еще в большом количестве.

В табл. 1 указаны условия синтеза полученных образцов и методы идентификации, примененные к каждому образцу. Поскольку после рентгенофазного анализа образец разрушается, спектры ИК-поглощения были измерены для других образцов, полученных в том же эксперименте.

Характеризация образцов проводилась следующими методами: 1) растровой электронной микроскопии (РЭМ) на приборе РЕММА-101А (Сумский завод), оснащенном микрорентгеноспектральной приставкой для химического анализа — количественного анализа легких элементов (В, N, O, C); 2) рентгеновского дифракционного анализа (РДА) на установке ДРОН-0.5; 3) рентгеновского анализа методом Дебая на приборе УРС-60; 4) ИК-спектроскопии на приборе UR-20.

3. Результаты исследований методами РЭМ и РДА

РЭМ-изображения микроструктуры образцов нитридборних поликристаллов, полученных из турбостратного нитрида бора, представлены на рис. 1. Изображения показывают поликристаллические сростки с типичным размером кристаллов (~ 0.1–0.4 mm), выращенных как на стенках камеры, так и в тигле. Химический анализ образцов дает соотношение В:N приблизительно 1:1. Содержание кислорода на их поверхности выше, чем в объеме (полученном на изломе или шлифе). Например, образец № 12 (табл. 2) на поверхности содержал В — 47.4 at.%, N — 44.8 at.%, O — 5.4 at.%, соотношение В:N равнялось 1.06. Внутренняя часть этого образца содержала только следы кислорода. После повторного нагрева до 600°С новая фаза не менялась.

Результаты РДА представлены в табл. 2, полученные дебаеграммы и дифрактограммы приведены на рис. 2 и 3. При анализе рентгенограмм был проведен теоретический расчет рентгенограммы для предсказанного кластерного кристалла ПКФ В₂₄N₂₄ методом компьютерного моделирования с помощью программы Вебера JSV [19], а также в соотвествии с методикой индицирования рентгенограмм [20].

Анализ рентгенограмм полученных образцов и расчетной рентгенограммы для ПКФ $B_{24}N_{24}$ показал, что рентгенограммы образцов № 5 и 10 близки к расчетной, а рентгенограммы образцов № 11 и 12 оказались более сложными. Для образцов № 5, 10–12 общим признаком является присутствие следующих характерных линий: d = 0.314-0.320, 0.286–0.291, 0.222–0.228, 0.1937–0.1955 пт. Основная линия — d = 0.286-0.291 пт. В расчетной рентгено-

грамме фазы ПКФ $B_{24}N_{24}$ этим линиям соответствуют d = 0.3153, 0.2878, 0.2229, 0.1955 nm. При сравнении расчетной рентгенограммы ПКФ $B_{24}N_{24}$ с рентгенограммами экспериментальных образцов оказалось, что она наиболее близка к наблюдаемой для образца N_{\odot} 5. На рентгенограмме некоторых образцов, например образца N_{\odot} 12, кроме линий новой фазы присутствует дополнительная система линий (d = 0.565, 0.328, 0.296, 0.274 nm) другой неизвестной фазы. В образцах N_{\odot} 10 и 11 частично присутствуют нитрид бора *h*-BN (d = 0.336, 0.216, 0.210 nm) и *E*-фаза.

Рентгенограмма полученной нами новой фазы также имеет много линий, близких к линиям Y BNфазы: d = 0.2835 (100%), 0.2004 (72%), 0.1634 (31%), 0.1412 (20%), 0.1262 (25%), 0.1154 nm (27%) по данным [21]. Кроме того, ее рентгенограмма очень напоминает рентгенограмму углеродной фазы по Штеренбергу [22].

Образцы № 1–3 в табл. 2, полученные при электроразрядном нагружении *h*-BN, имели на дифрактограмме следующие линии, интенсивности которых соотносятся с данными образцов, полученных флюидным способом: d = 0.365 (5%), 0.286 (11%), 0.244 (14%), 0.202 (1,5%),

b

Рис. 1. РЭМ-изображения двух поликристаллических образцов новой фазы BN с увеличением 100 (*a*) и 111 (*b*).

Рис. 2. Дебаеграммы $\operatorname{Fe} K_{\alpha}$. a — образец No 10, b — образец No 11.

Рис. 3. Дифрактограммы образцов новой фазы BN, полученных при электроразрядном нагружении *h*-BN, Fe K_{α} . I — линии новой фазы BN, II — *h*-BN. Напряжение электроразряда, kV: $I - 1, 2 - 1.5, 3 - 2. \alpha$ — межплоскостные расстояния (в mm).

0.162 (3%), 0.156 (5%), 0.143 (5%), 0.128 (1%), 0.123 nm (1%). На рис. 3 представлены интенсивности линий новой фазы (I) и фазы *h*-BN (II). Из рис. 3 видно, что при увеличении напряжения электроразряда от 1 до 1.5 и 2 kV интенсивность линий новой фазы увеличивается, а *h*-BN — уменьшается. Это заметно при сравнении двух соседних линий с d = 0.162 nm (новая фаза) и d = 0.166 nm (*h*-BN).

Результаты исследований методом ИК спектроскопии

ИК-спектры поглощения новой неустановленной фазы были измерены в диапазоне 400–3800 сm⁻¹. Также были

ПКФ В24N24		Образец № 10		Образец № 11		Образец № 12		Образец № 5		Образцы № 1–3	
hkl	d	d	i	d	i	d	i	d	i	d	i
100	0.705	0.733	2	0.705	1	0.719	2	-	-		
_	_	0.602*	1	0.605*	1	0.604*	2	—	—		
_	0	0.530	2	0.529	3	0.565	5	0.542	2		
110	0.4985 (5)	0.485	6	0.482	5	0.505	4**	_	_		
_	_	0.449	4	0.445	4	0.458	4	0.457	1		
_	-	-	-	-	•	0.434	2	-			
111	0.407	0.415	l 0**	0.415	2	0 272	- 1	0.408	3		
200	0.2525	0.374	8	0.3//	4	0.372	1	0.370	3	0.265	5
200	0.3525	— 0.220***	-	0.301	4	0.351	2	0.354	3	0.305	3
210	0 2152	0.339	5	0.330	5	0 2 2 8	6	0.215		0.210	7
210	0.3133	0.321	5	0.320	5	0.328	1	0.315	0	0.510	/
_	_	_	_	0.299	2	0.296	10	_	_		
211	0.2878(3)	0.289	10	0.291	10	0.296	6	0.287	10	0.286	11
	-	0.276	1	0.278	1	0.274	5	-	-	0.200	
_	_	0.263	3	0.261	7	0.265	3	0.267	2		
220	0.2493	0.254	2	0.253	2	0.251	2	0.249	7	0.244	14
300	0.2350	0.240	3	0.238	4	_	_	0.236	2		
_	_	_	_	0.233	1	_	_	_	_		
310	0.2229	0.228	3	0.226	4	0.227	2	0.222	6		
_	_	_	_	0.221	1	0.218	2	-	-		
311	0.2126	0.215	4	0.216	4	-	-	0.213	2		
_	—	—	_	0.210	2	0.210	4	_	-		
222	0.2036	0.202	3	0.202	2	0.200	4	0.202	4	0.202	1.5
320	0.1955	0.1955	8	0.1953	2	0.1937	4	0.1940	5		
_	—	0.1914	1	0.1905	2	-	—	-	-		
321	0.1884	0.1877	3	0.1869	3	—	-	0.1878	1		
_	—	0.1838	2	0.1831	3	0.1843	3	_	_		
400	0.1763 (2)	0.1795	4	0.1791	4	-	-	0.1815	4	0.18	
410	0.1710	0.1747	2	—	-	0.1727	3	0.1712	4		
411	0.166	0.1665	2	-	_	_	_	-	-	0.1(2	2
331	0.161/	0.1632	2	0.1648	2	_	_	0.1634	3	0.162	3
420	0.1538	0.1560	1	_	_	_	_	0 15/3	2	0.156	5
421	0.1558	0.1340	∠ 1**	0148.2		_	_	0.1343	5	0.150	5
552	0.150	0.1467	2	0.148 2	-						
422	0 144	0.1436	$\frac{2}{2}$	_	_	_	_	_	_		
500, 430	0.1410	0.1415	3	0.1401	3	_	_	0.1392	3	0.143	5
200, 120	011 110	0.1399	2	011 101	5			0.12/2	5	011 10	U
510	0.1382	0.1364	1	_	_	_	_	_	_		
511	0.136	0.1312	3	_	_	_	_	_	_		
_	_	0.1259	3	_	_	_	_	_	_		
441, 522	0.1227	0.1235	3	0.1235	3	-	-	0.1223	2	0.128	1
600, 442	0.1175 (10)	0.1162	5	0.1161	3	-	-	0.1173	2	0.123	1
_	—	0.1144	3	-	-	-	-	-	-		
_	_	0.1114	3	_	_	-	_	-	-		
_	—	0.1106	2	0.1075	4	—	—	—	—		
—	—	0.1092	1	0.1064	4	-	-	—	-		
—	—	0.1085	_	—	—	—	-	—	-		
_	—	0.1067	5	—	—	—	—	—	-		
	-	0.1056	5	- 0.1022	-	-	-	- 0.1029	-		
444 700	0.1018(6)	0.1026	0	0.1022	4	_	_	0.1028	4		
700	0.1007	0.1015	4	0.1012	4	_	_	0.1000	4		
/10	0.099/	I –	_	-	_	I –	I –	0.0993	3	l	l

Таблица 2. Вычисленная теоретически рентгенограмма для ПКФ В₂₄N₂₄ (столбец 1; в скобках указана интенсивность рефлекса) и экспериментальные рентгенограммы образцов, полученных методом флюидного синтеза (столбцы 2–5) и при электроразрядном нагружении (столбец 6) (*d* — межплоскостное расстояние, *i* — интенсивность рефлексов, %)

* Е-фаза.

** Широкий рефлекс.

*** *h*-BN (остаток исходной фазы).

получены ИК-спектры поглощения исходных *t*-BN и *h*-BN. В ИК-спектрах поглощения исходных *t*-BN и *h*-BN присутствуют полосы при 1400 и 800 cm⁻¹ и при 1380 и 810 cm⁻¹ соответственно. Эти полосы связаны с колебаниями атомов в плоскости слоя и с колебаниями в ортагональном направлении между плоскостями.

В полученных спектрах поглощения новой фазы можно выделить три характерных участка. При $400-700\,{\rm cm}^{-1}$ наблюдаются малоинтенсивные, нечетко выделенные полосы, из которых наиболее четкими и присутствующими для всех исследованных образцов является пик при 465 cm⁻¹. Участок при 1500-3800 cm⁻¹ в основном монотонный, поглощение практически отсутствует, наблюдаются две широкие полосы при 3150, 3400 cm⁻¹, которые связаны с примесной гигроскопической водой. Наиболее характерным является участок при 700-1500 ст⁻¹, представленный несколькими четкими интенсивными полосами. Среди этих полос традиционные для нитридборных структур полосы при 1430 cm⁻¹ и несколько смещенная до значения $780 \, {\rm cm}^{-1}$ полоса при $800 \, {\rm cm}^{-1}$. Наиболее интенсивная широкая полоса 1430 ст-1, которая характерна для *h*-BN, *t*-BN и соотносится для этих структур с колебаниями атомов в плоскости слоя, в образцах новой фазы ВN расщепляется на две, а в некоторых образцах на три полосы. Наиболее характерна полоса при 704 ст⁻¹, которая не наблюдалась для других неустановленных фаз BN, в частности для исследованной и идентифицированной нами ранее ГАФ В₁₂N₁₂ (Е-фазы) [9].

Рис. 4. ИК-спектры поглощения. *а* — рассчитанный для каркасного кластера В₂₄N₂₄, *b* — экспериментально полученный для новой фазы BN (образец № 4).

Таблица	3. Э	кспери	мента	ільны	le	ИК-спек	тры	поглощения
образцов	новой	фазы	BN	(N₂	4,	10-12)	И	теоретически
рассчитанные ИК-спектры для кластера В ₂₄ N ₂₄ (F — частота,								
в скобках	указан	а инте	нсивн	юсть	ко.	лебания	во	тносительных
единицах)								

F, cm ⁻¹							
Расчет спектра ИК-поглощения кластера В ₂₄ N ₂₄	Образцы № 10–12	Образец № 4					
294, 333	406 430 465	400 425 465					
505 548, 569 (0.3), 604 706 (0.18)*	515 545, 600, 655 704*	515 530, 630 (плечо) 704*					
774 801 (18)** 878, 948 (1.5)	740 780** 935	740 (плечо) 780** 935					
- 1137 (1.8), 1179 (4.8) 1231 (0.2) 1337 (3) 1430 (122)***	1040 1115 1270 1375 1420***	1040 1118 1275, 1280 1375 1430***					
_ ` `	1450	1460					

* Наиболее характерная полоса новой фазы.

** Колебания в плоскости.

*** Колебания в ортогональном к плоскости направлении.

Для анализа ИК-спектра новой фазы были привлечены теоретические работы [12,23,24], где методами математической физики был сделан прогноз существования ряда каркасных кластеров фуллереноподобной морфологии типа $X_n Y_n$, из которых можно конструировать цеолитоподобные кристаллы по типу ранее рассмотренных *Е*-фазы и кубического графита на основе С, ВN и других изоэлектронных соединений. В рамках метода Хартри-Фока (RHF с базисным набором 6-31G(d)) были исследованы стабильность, геометрия структуры, а также рассчитаны оптические колебательные спектры этих кластеров. Механизм распространения результатов исследования оптических колебательных спектров, полученных для обособленных фуллереноподобных кластеров методами математической физики, на новые синтезированные твердотельные наноструктуры рассматривался в [25].

Анализ рассчитанных спектров ИК-поглощения кластера $B_{24}N_{24}$ и их сравнение с экспериментальными ИКспектрами новой фазы BN (рис. 4 и табл. 3) показали, что в расчете кроме основных полос 800 и 1430 cm^{-1}, присущих нитридборным структурам, наблюдаются менее интенсивные дополнительные полосы 294, 333, 505, 548, 569, 706, 774, 879, 948, 1137, 1179, 1231, 1337 cm^{-1}. Болышинство из этих дополнительных полос находит соответствие в спектрах новой фазы, а характерная для новой фазы полоса при 704 cm^{-1} соответствует пику при 706 cm^{-1} в рассчитанном спектре, хотя и

имеется расхождение в их интенсивностях. Отмечен также сдвиг частот колебаний между расчетным и экспериментальными спектрами, который может быть объяснен тем, что сравниваются спектры рассчитанного изолированного кластера и экспериментальной периодической структуры. Кроме того, частоты колебаний при увеличении массы кластера смещаются в сторону низких частот, а также наблюдается размерный эффект: сдвиг частот тангенциальных валентных колебаний в сторону повышения, связанный с укорачиванием связей. На основе анализа ИК-спектров сделано заключение, что новая синтезированная фаза ВN может состоять из структурных единиц — каркасных кластеров В₂₄N₂₄.

Далее в определении характеристик новой фазы BN было использовано теоретическое исследование структуры фулборенита ПКФ В₂₄N₂₄ [17]. Моделирование показало, что фаза ПКФ В₂₄N₂₄ — гетерополярный полупроводник или диэлектрик с шириной запрещенной зоны $\Delta E_g = 3.76 \,\text{eV}$, плотностью $\rho = 2.495 \,\text{g/cm}^3$ и объемным модулем $B_0 = 367 \,\text{GPa}$, сравнимым с объемным модулем кубического нитрида бора. Фаза ПКФ В₂₄N₂₄ имеет структуру типа нитридборного цеолита с диаметром каналов 0.46 nm. Также показано, что ПКФ В₂₄N₂₄ имеет простую кубическую решетку: равновесный параметр решетки a = 0.7346 nm, длина B–N связи $a_{\rm BN} = 0.1521\,{\rm nm}$, число атомов в элементарной ячейке Z = 48. Эти расчеты можно использовать для предсказания свойств новой синтезированной фазы BN. Для уточнения этих свойств необходимы дальнейшие эксперименты по исследованию нитридборных фаз и теоретический расчет свойств кристаллов на основе каркасных кластеров BN с различным числом атомов.

5. Твердость

Было проведено исследование микротвердости синтезированных кристаллов новой фазы BN при нагрузке на индентор в 100 g. Средние значения замеров микротвердости этих кристаллов находятся в пределах 0.41-0.63 GPa. Минимальные значения замеров микротвердости составляли 0.25 GPa, а максимальные -1.6 GPa. Эти значения микротвердости значительно превышают микротвердость h-BN. Для сравнения укажем, что по литературным данным твердость h-BN по шкале Мооса составляет 1-2, что соответствует значениям 0.05-0.6 GPa, а микротвердость с-BN составляет 46.8-50.2 GPa. Известно также, что для горячепрессованного *h*-BN она составляет 0.23 GPa, а для пиролитического *h*-BN — 0.40 GPa. По значениям микротвердости новую фазу можно отнести к малоизученным промежуточным фазам BN.

6. Заключение

Методом флюидного синтеза получена новая наноструктурированная модификация нитрида бора с твердостью 0.41–0.63 GPa. Существование новой фазы подтверждают экспериментальные рентгеновские спектры и спектры инфракрасного поглощения, где отмечены новые характерные рефлексы (основной при d = 0.286-0.291 nm) и полосы (при 704 сm⁻¹). Рентгенограмма новой фазы близка к теоретической рентгенограмме, рассчитанной для фазы ПКФ В₂₄N₂₄. Экспериментальный спектр инфракрасного поглощения новой фазы согласуется с теоретически рассчитанным спектром каркасного кластера фуллереноподобной морфологии В₂₄N₂₄ симметрии *O*.

Новая фаза BN соотносится с теоретическим исследованием ПКФ $B_{24}N_{24}$ со структурой типа нитридборного цеолита с диаметром каналов 0.46 nm с простой кубической решеткой: равновесный параметр решетки a = 0.7346 nm, длина B–N связи $a_{BN} = 0.1521$ nm, число атомов в элементарной ячейке Z = 48.

Список литературы

- А.В. Курдюмов, В.Г. Малоголовец, Н.В. Новиков. Полиморфные модификации углерода и нитрида бора. Справочник. Металлургия, М. (1994). 318 с.
- [2] С.С. Бацанов, Г.Е. Блохин, А.А. Дерибас. ЖСХ 6, 227 (1965).
- [3] T. Akashi, H.-R. Pak, A.B. Sawaoka. J. Mater. Sci. 21, 4060 (1986).
- [4] A. Sokolovska. J. Cryst. Growth 116, 507 (1992).
- [5] J.B. Wang, X.L. Zhong, C.Y. Zhang, B.Q. Huang, G.W. Yang. J. Mater. Res. 18, 2774, (2003).
- [6] В.В. Покропивный, А.В. Покропивный, В.В. Скороход, А.В. Курдюмов. Доп. НАН України 4, 112 (1999).
- [7] V.V. Pokropivny, V.V. Skorokhod, G.S. Oleinik, A.V. Kurdyumov, T.S. Bartnitskaya, A.V. Pokropivny, A.G. Sisonyuk, D.M. Sheichenko. J. Solid State Chem. **154**, 214 (2000).
- [8] В.В. Покропивный, А.В. Покропивный. ФТТ 46, 380 (2004).
- [9] В.В. Покропивный, А.С. Смоляр, А.В. Покропивный. ФТТ 49, 562 (2007).
- [10] А.С. Смоляр, Ю.И. Созин, В.А. Бархоленко, С.Н. Малоштан, В.А. Куц, В.Г. Гурин, А.П. Архипов, А.Ю. Герасимов, Н.А. Развадовский, А.Н. Титенко. Сверхтвердые материалы 2, 79 (2002).
- [11] V. Pokropivny, A. Smolyar, A. Pokropyvny, V. Kuts, R. Parteh. Abstract 8th Applied Diamond Conf. "NanoCarbon-2005", Argonne National Laboratory, Argonne, Illinoise, USA (2005).
- [12] В.В. Покропивный, Л.И. Овсянникова, С.В. Ковригин. ФТТ 49, 2224 (2007).
- [13] T. Oku, A. Nishiwaki, I. Narita, M. Gonda. Chem. Phys. Lett. 380, 620 (2003).
- [14] T. Oku, A. Nishiwaki, I. Narita. Physica B 351, 184 (2004).
- [15] R. Zope, T. Baruah, M.R. Pederson, B.I. Dunlap. Chem. Phys. Lett. **393**, 300 (2004).
- [16] H.-Sh. Wu, H. Jiao. Chem. Phys. Lett. 386, 369 (2004).
- [17] В.В. Покропивный, В.Л. Бекенев. ФТП 40, 656 (2006).

- [18] В.В. Покропивний, А.С. Смоляр, С.М. Малоштан, В.О. Куц, В.Г. Гурін, О.П. Архіпов, А.В. Покропивний, В.О. Бархоленко. Флюїдний синтез нових поліморфних модифікацій вуглецю і нітриду бору. СПД Моляр С.В., Київ. (2010). 168 с.
- [19] S. Weber. J. Appl. Cryst. 30, 565 (1997).
- [20] Б.Ф. Ормонт. Введение в физическую химию и кристаллохимию полупроводников. Высш. шк., М. (1968) 487 с.
- [21] Л.Ф. Куликова, Н.А. Бенделиани. Сверхтвердые материалы 4, 17 (2005).
- [22] Л.Е. Штеренберг, С.В. Богданова. Неорган. материалы 5, 807 (1979).
- [23] В.В. Покропивный, Л.И. Овсянникова. ФТТ 49, 535 (2007).
- [24] Л.И. Овсянникова, В.В. Покропивный. Электронная микроскопия и прочность материалов (Ин-т проблем материаловедения НАН Украины) 15, 28 (2008).
- [25] L.I. Ovsiannikova, A.P. Naumenko, V.V. Kartuzov, A.S. Smolyar. Ukr. J. Phys. 57, 2, 214 (2012).