01;04;10 Плазмооптическая масс-сепарация изотопов в магнитном поле линейного тока

© В.М. Бардаков,¹ Г.Н. Кичигин,² Н.А. Строкин,³ Е.О. Царегородцев³

 ¹ Иркутский государственный университет путей сообщения, 664074 Иркутск, Россия
² Институт солнечно-земной физики СО РАН, 664033 Иркутск, Россия
³ Иркутский государственный технический университет, 664074 Иркутск, Россия
e-mail: strokin85@inbox.ru

(Поступило в Редакцию 17 ноября 2009 г. В окончательной редакции 1 марта 2010 г.)

Проанализированы существующие методы электромагнитной масс-сепарации. Рассчитаны траектории движения ионов изотопов в магнитном поле линейного тока при инжекции ионов в область сепарации по различным направлениям. На основе проведенного анализа предложены две новые схемы масс-сепараторов, содержащих в качестве источника ионов плазменный ускоритель. В первой схеме плазма инжектируется вдоль продольной оси ускорителя, во второй — применен плазменный ускоритель с кольцевым выпуском потока плазмы вдоль радиуса по направлению к продольной оси сепаратора.

Введение

Среди известных к настоящему времени универсальных методов производства изотопов наиболее перспективным представляется электромагнитный вакуумный метод масс-сепарации [1], основанный на зависимости параметров движения иона во внешних электрических и магнитных полях от отношения массы к заряду. Установки электромагнитного разделения допускают принципиальную возможность получения изотопов любого элемента с высокой кратностью обогащения в одном цикле разделения.

Основной недостаток электромагнитных сепараторов — очень низкая производительность [2]. Фундаментальная идея, позволяющая существенно увеличить производительность электромагнитного сепаратора, состоит в разделении вещества по массам, находящегося в состоянии плазмы, когда отсутствуют ограничения ионного тока собственным объемным зарядом. Реализовать эту идею можно двумя путями:

1) извлекать нужные частицы (изотопы) из плазмы рабочего газа (металла);

2) работать с квазинейтральным стационарным плазменным потоком ионов различных масс; в качестве источника плазмы здесь предлагается использовать плазменный ускоритель.

Существующие исследовательские установки и машины производственного назначения построены по первому принципу (извлечение из плазмы рабочего газа) и названы магнитоплазменными сепараторами [3]. Отличие названных установок друг от друга состоит в способах создания плазмы и потоков рабочего вещества, ионизации рабочего газа, реализации процесса нагрева целевых ионов (использование внешних переменных полей или полей, спонтанно возбуждаемых в плазме), их сбора на приемники. Возможность развития электромагнитных сепараторов по второму пути рассматривалась в работах [4,5]. В дальнейшем эта мысль получила развитие в работах [2,6,7], где были приведены первые расчеты плазмооптических электромагнитных масс-сепараторов ПОМС-Е и ПОМС-Н.

Теоретический анализ

В настоящей работе предлагаются новые способы разделения изотопов, реализация которых обеспечит возможность совместить высокое разрешение по массам, достигнутое на традиционных электромагнитных сепараторах, работающих с пучками ионов, с требуемой промышленностью высокой производительностью и универсальностью получения ядерно-чистых веществ. Такие характеристики достигаются, во-первых, за счет применения плазменного ускорителя в качестве источника ионов изотопов, во-вторых, ионы предлагается разделять по массам в неоднородном магнитном поле линейного тока в области сепарации, где обеспечена квазинейтральность плазменного потока.

Одним из случаев движения в неоднородном магнитном поле является движение ионов в магнитном поле линейного тока *I*, протекающего по цилиндрическому проводнику радиуса r = a. Рассмотрим в цилиндрической системе координат r, φ , *Z* закономерности движения однозарядных ионов в таком поле. Считаем, что ток по проводнику протекает в направлении, противоположном направлению оси *Z*. В общем случае уравнения, описывающие трехмерную динамику частиц в окрестности проводника, аналитически не решаются и траекторию иона можно найти только путем численных расчетов. Однако если считать азимутальную скорость иона нулевой, то некоторые особенности движения ионов в плоскости *r*, *Z* можно проследить, проанализировав уравнение

$$\frac{d^2z}{dt^2} = \frac{eB_{\varphi}}{Mc}\frac{dr}{dt} = -\frac{2eI}{Mc^2}\frac{1}{r}\frac{dr}{dt} = -U\frac{d}{dt}\ln r, \quad (1)$$

где $U = 2Ie/Mc^2$, e — заряд электрона, c — скорость света, M — масса иона, $B_{\varphi} = -2I/(cr)$ — азимутальная компонента магнитного поля.

Отметим, что в данном двумерном случае движение иона — это дрейф в неоднородном магнитном поле проводника с током, при котором ион совершает периодические колебания в радиальном направлении и смещается вдоль оси Z. При таком движении соблюдается закон сохранения

$$v_z^2 + v_r^2 = v_{z0}^2 + v_{r0}^2 = V_0^2,$$

где v_r , v_z — радиальная и *z*-компоненты скорости, v_{r0} , v_{z0} — их начальные значения, V_0 — начальное абсолютное значение скорости иона.

Решение уравнения (1) запишем в виде

$$v_z = \dot{z} = v_{z0} - Uln\left(\frac{r}{r_0}\right),$$

где r_0 — расстояние точки старта иона от оси проводника, в которой он имеет начальную скорость v_{z0} . Отсюда, введя обозначения для безразмерных скоростей $v = v_z/V_0$, $\Delta_r = v_{r0}/V_0$, $\Delta_z = v_{z0}/V_0$, получим соотношение, связывающее расстояние иона от провода rс z-составляющей его скорости v:

$$\frac{r}{r_0} = \exp\left[-A(v \pm \Delta_z)\right],\tag{2}$$

где

$$A = \frac{V_0}{U} = \frac{V_0 M c^2}{eI}.$$

Из соотношения (2) нетрудно видеть, что максимальное удаление иона от оси проводника r_{\max} при его периодических радиальных колебаниях определяется при v = -1, а минимальное r_{\min} — при v = 1.

При старте иона строго вдоль проводника в направлении протекания тока, если $\Delta_z = -1$ ($\Delta_r = 0$), с помощью (2) получим, что траектория иона лежит между точками, имеющими величины радиусов

$$r_{\max} = r_0 \exp(2A), \quad r_{\min} = r_0,$$
 (3)

а в промежуточной точке, где v = 0, расстояние иона от оси

$$r_+ = r_0 \exp(A). \tag{4}$$

Если $\Delta_z = 1$ ($\Delta_r = 0$, ион стартует вдоль оси Z),

$$r_{\min} = r_0 \exp(-2A), \quad r_{\max} = r_0,$$
 (5)

а в промежуточной точке, где v = 0, расстояние и
она от оси

$$r_{-} = r_0 \exp(-A).$$
 (6)

При старте строго в радиальном направлении, т.е. при $\Delta_z = 0$ ($\Delta_r = \pm 1$), траектория иона лежит между радиусами

$$r_{\max} = r_0 \exp(A), \quad r_{\min} = r_0 \exp(-A).$$
 (7)

Проанализировав формулы (3)-(7), прежде всего отметим, что при инжекции вдоль проводника ион удаляется от оси Z существенно дальше, чем при радиальной инжекции. Далее, при заданной величине тока I расстояния, определяемые формулами (3)-(7), экспоненциально зависят от комбинации (V_0M) . Если стартующие ионы имеют одинаковую энергию E_0 , тогда $V_0M = (2E_0M)^{1/2}$, т.е. в этом случае экстремальные расстояния экспоненциально зависят от $(M^{1/2})$. Если инжектированные ионы всех масс имеют одинаковую скорость, то зависимость радиусов от массы более сильная, пропорциональная $\exp(BM)$, где B — константа.

Рассмотрим зависимости (3)-(7) с точки зрения приложения их к сепарации изотопов. При этом будем полагать, что ионы инжектируются из точки с радиусом r_0 , а коллектор находится на каком-либо из расстояний: r_{max} , r_+ , r_- , r_{min} . Найдем дисперсию, т.е. пространственное разделение на коллекторе ионов различных масс, в отсутствие начального углового разброса в зависимости от направления инжекции. Дисперсию определим формулой

$$\delta r = \frac{|(r_0 - r_m) - (r_0 - r_{m0})|}{|(r_0 - r_{m0})|}$$

где r_{m0} , r_m — минимальный, промежуточный или максимальный радиусы для ионов с массами соответственно, M_0 и $M = M_0 + \delta M$ ($\delta M \ll M_0$).

При инжекции вдоль проводника с помощью (3)–(7) на коллекторе, расположенном на максимальном расстоянии, получим величину дисперсии, равную

$$\delta r_{\max} = \frac{A(\delta M/M_0)}{1 - \exp(-2A)}.$$

На минимальном расстоянии дисперсия определится формулой

$$\delta r_{\min} = \frac{A(\delta M/M_0) \exp(-2A)}{1 - \exp(-2A)}$$

Для коллекторов, расположенных на промежуточных расстояниях r_+ , r_- получим соответственно

$$\delta r_{+} = \frac{A(0.5\delta M/M_0)}{1 - \exp(-A)},$$

$$\delta r = \frac{A(0.5\delta M/M_0)\exp(-A)}{1 - \exp(-A)}$$

При радиальной инжекции

δ

$$\delta r_{\text{max}} = \delta r_{+} = \frac{A(0.5\delta M/M_0)}{1 - \exp(-A)}$$
$$\delta r_{\text{min}} = \delta r_{-} = \frac{A(0.5\delta M/M_0)\exp(-A)}{1 - \exp(-A)}$$

Журнал технической физики, 2010, том 80, вып. 10

Рис. 1. Сравнение вида траекторий ионов трех различных масс M_1 , M_2 , M_3 , движущихся в однородном магнитном поле (штриховые кривые) и в магнитном поле линейного тока (сплошные кривые).

Как и следовало ожидать, если $A \ll 1$, величина дисперсии для любого способа инжекции точно такая же, как для однородного магнитного поля: $\delta r_0 = 0.5 \delta M / M_0$ [8]. В реальных ситуациях, как правило, параметр А велик, а для больших значений параметра $A \gg 1$, как видно из приведенных выше формул, дисперсионное разрешение по массам на коллекторах, расположенных на промежуточном r_{-} и на минимальном r_{\min} расстояниях, бесконечно мало, поэтому для практических приложений эти случаи неинтересны. В случае A ≫ 1 при инжекции вдоль протекания тока в точке траектории иона, которая расположена на максимальном расстоянии от оси проводника, дисперсия максимальна $\delta r_{\rm max} = A(\delta M/M_0)$. В промежуточной точке δr_+ точно так же, как и в точке максимального удаления при радиальной инжекции, дисперсия равна $\delta r_{+} = A(\delta M/M_{0})/2$. Таким образом, хотя при радиальной инжекции дисперсия по массам в два раза меньше, чем при инжекции вдоль тока, но она в А/2 раз больше, чем для случая однородного магнитного поля.

В неоднородном магнитном поле дисперсионное разрешение по массам существенно лучше, чем в однородном поле, что демонстрирует рис. 1, где приведены траектории движения ионов в однородном магнитном поле (штриховые кривые) и в магнитном поле линейного тока (сплошные кривые). Анализируемые ионы имеют массу $M_1: M_2: M_3 = 1: 1.25: 1.5$. Предполагается, что ионы всех масс инжектируются вдоль направления протекания тока, имеют одинаковую начальную энергию и отсутствует разброс скоростей в радиальном направлении. Для массы M_1 выбран параметр

$$A = \frac{V_0 M_1 c^2}{eI} = \frac{20}{3};$$

в случае однородного поля B_0 частицы инжектируются из точки с координатами r = 0, Z = 0, а координаты r, Z траектории иона нормированы на ларморовский радиус r_{L1} частицы с массой $M_1(r_{L1} = M_1 c M_0/(eB_0))$. В неоднородном магнитном поле частицы начинают свое движение при Z, равном ларморовскому радиусу r_{L1} . Координаты r, Z нормированы таким образом, чтобы максимальное расстояние от точки старта до коллектора для иона с массой M_1 по оси r было равно $2r_{L1}$, а по оси Z было равно r_{L1} . Из рис. 1 наглядно видно преимущество разделения изотопов в поле прямого тока по сравнению со способом разделения их в однородном магнитном поле.

Следует заметить, что радиальная дисперсия в неоднородных электромагнитных полях нового — плазмооптического масс-сепаратора [2,6] $\delta r = \delta M/M_0$, что также значительно меньше дисперсии в поле прямого тока. Особенности разделения изотопов в таком устройстве описаны нами в работе [9].

Выше был затронут вопрос о дисперсии, связанной с изменением массы изотопов. Рассмотрим теперь пространственное разделение изотопов на коллекторе, связанное с наличием начального углового разброса инжектированных ионов. По аналогии с вышеприведенным решением дисперсию для ионов с фиксированной массой в этом случае определим формулой

$$\delta r = \frac{|(r_0 - r_m) - (r_0 - r_{m0})|}{(|r_0 - r_{m0})|}$$

где r_m — максимальный или промежуточный радиус для ионов, инжектированных с угловым разбросом, r_{m0} эти же радиусы для ионов, инжектированных без углового разброса. Тогда для случая радиальной инжекции при разбросе по скоростям для продольной компоненты, равном $\pm \Delta_r$, получим для дисперсии формулу

$$\delta r_{\parallel} = rac{2sh(A\Delta_z)}{1 - \exp(-A)}.$$

При старте иона в направлении протекания тока с разбросом радиальной составляющей скорости $\pm \Delta_r$ дисперсия определится выражением

$$\delta r_{\perp} = \frac{1 - \exp(-A\Delta_r^2/2)}{1 - \exp(-2A)}$$

в точке траектории, максимально удаленной от оси проводника, и формулой

$$\delta r_{+} = \frac{1 - \exp(-A\Delta_r^2/2)}{1 - \exp(-A)}$$

— в промежуточной точке r_+ . Из этих выражений видно, что при $|\Delta_z| = |\Delta_r| = \Delta \ll 1$ отношения

$$\frac{\delta r_{+}}{\delta r_{\parallel}} = \frac{1 - \exp(-A\Delta^{2}/2)}{2\mathrm{sh}(A\Delta)}$$

$$\frac{\delta r_{\perp}}{\delta r_{\parallel}} = \frac{[1 - \exp(-A\Delta^2/2)][1 - \exp(-A)]}{[1 - \exp(-2A)][2\mathrm{sh}(A\Delta)]}$$

И

бесконечно малы для любых значений параметра A, т.е. при инжекциии ионов вдоль проводника дисперсия

существенно меньше, чем при радиальной инжекции. Однако заметим, что даже минимальная дисперсия δr_{\perp} при $A \ll 1$ такая же, как и в случае однородного поля $\delta r_{0\Delta} = \Delta^2/2 = \delta r_{\perp}$ [8], а при $A \gg 1$ величина δr_{\perp} в A раз больше, чем $\delta r_{0\Delta}$. Таким образом, при старте иона в направлении протекания тока для практически важного случая, когда параметр $A \gg 1$, максимальная дисперсия, связанная как с изменением массы ионов, так и с наличием углового разброса, в A раз больше, чем в случае однородного магнитного поля.

Результаты и их обсуждение

Из анализа движения ионов в магнитном поле линейного тока в отсутствие азимутальной скорости можно сделать следующие выводы, касающиеся сепарации изотопов в неоднородном магнитном поле.

1. Сепарация изотопов в неоднородном магнитном поле за счет большой дисперсии по массам имеет существенные преимущества перед сепарацией изотопов в однородном магнитном поле только в отсутствие у ионов, инжектированных из источника изотопов, начального углового разброса по скоростям.

 Инжекция ионов изотопов в направлении протекания тока по сравнению с инжекцией ионов в радиальном направлении имеет заметные преимущества:
дисперсия за счет изменения массы больше в два раза, 2) дисперсия за счет начального углового разброса по скоростям существенно меньше.

3. Оптимальный вариант практической реализации процесса сепарации ионов изотопов в неоднородном магнитном поле линейного тока — это инжекция ионов в направлении протекания тока и расположение коллектора в промежуточной точке с радиусом r_+ . При этом дисперсионное разрешение по массам и расстояние коллектора от оси проводника такое же, а дисперсионное разрешение по меньше, чем при радиальной инжекции.

На основе сделанных выводов можно предложить первый из способов электромагнитной плазмооптической масс-сепарации, который реализуется при инжекции кольцевого плазменного потока вдоль продольной оси классического плазменного ускорителя в область сепарации, где создано азимутальное поперечное к направлению движения потока неоднородное магнитное поле (рис. 2). Исходное вещество, содержащее смесь, например *n* различных изотопов (элементов), испаряют, подают в газообразном состоянии в плазменный ускоритель, например двухступенчатый, с минимизированным энергетическим и угловым разбросами, имеющий пространственно разделенные области ионизации и ускорения частиц. Далее ионы изотопов ускоряются в области второй ступени ускорителя и на выходе из источника плазмы попадают в вакуумный объем масс-сепаратора, в котором есть магнитное поле $B\{0; B_{\varphi}; 0\}$.

В магнитном поле ионы, входящие в него под прямым углом по всему периметру плазменного потока,

Рис. 2. Электромагнитный плазменный масс-сепаратор: 1 — магнитопровод, выполняющий и роль катода; 2 — внутренняя катушка электромагнита; 3 — двухкаскадный ускоритель плазмы с замкнутым дрейфом электронов; 4 — панорамный приемник разделенных ионов изотопов; 5 — источник пучка электронов компенсации; 6 — проводник с током для создания сепарирующего азимутального магнитного поля. Буквой "i" обозначены траектории ионов, "I" — ток, протекающий по проводнику 6 для создания сепарирующего азимутального магнитного магнитного поля, буквой "e" — поток электронов из источника 5 пучка электронов компенсации. Все устройство находится в вакуумной камере (она не показана).

разделяются по массам M_{in} и, двигаясь в радиальном направлении, образуя "зонтик" в пространстве, собираются каждый на свой сборник ионов на расстояниях $r_{\max.n} = a \exp(V_0 M_n c^2/eI)$, разнесенных друг от друга на расстояние, определяемое величиной δr_n . В области сепарации осуществляется компенсация объемного заряда ионов с помощью внешнего источника электронов

Рис. 3. Электромагнитный плазменный масс-сепаратор с кольцевым — вдоль радиуса — выпуском плазменного потока: 1 плазменный ускоритель; 2 — постоянный магнит; 3 — зазор магнитопровода с поперечным магнитным полем; 4 — приемники разделенных ионов изотопов; 5 — источник электронов сопровождения; 6 — токопровод.

сопровождения. В сепараторе обеспечена возможность разделять в одном цикле исходную смесь изотопов на все составляющие.

Важным параметром при создании электромагнитных масс-сепараторов является размер области, в которой необходимо создавать магнитное поле. Нужны решения, позволяющие минимизировать этот объем. Требуемый результат может быть достигнут, если плазменный ускоритель выполнить с кольцевым — вдоль радиуса к оси сепаратора — выпуском потока плазмы.

На рис. З приведена одна схема еще одного электромагнитного плазмооптического масс-сепаратора с неоднородным магнитным полем с инжекшией плазменного потока вдоль радиуса по направлению к продольной оси сепаратора. Плазменный ускоритель может быть выполнен с выпуском потока плазмы и под изменяемым углом по отношению к продольной оси ускорителя [10]. Ион изотопа двигается в магнитном поле по радиусу к оси сепаратора по траектории, с изменяющимся ларморовским радиусом. В области максимального магнитного поля вблизи поверхности токопровода ион изменяет направление своего движения на обратное начинает двигаться от оси сепаратора. Использование плазменного ускорителя с кольцевым выпуском, например с расстояния r = 20a вдоль радиуса к оси сепаратора, дает $r_{\text{max 1}} \approx 365a$, в то время как при инжекции вдоль продольной оси сепаратора $r_{\rm max\,2} \approx 16\,000a$ и $r_{\max 2}/r_{\max 1} \approx 44$.

Работа выполнена в рамках проекта № 4222 аналитической ведомственной целевой программы "Развитие научного потенциала высшей школы (2009–2010 годы)".

Список литературы

- Изотопы: свойства, получение, применение. Т. 1 / Под ред. В.Ю. Баранова. М.: Физматлит, 2005. 600 с.
- [2] Морозов А.И., Савельев В.В. // Физика плазмы. 2005. Т. 31. № 5. С. 458–465.
- [3] Ковтун Ю.В., Скибенко Е.И., Юферов В.Б. // Вопросы атомной науки и техники. 2008. № 2. С. 149–154.
- [4] Морозов А.И., Лебедев С.В. // Вопросы теории плазмы. Т. 8. М.: Атомиздат, 1974. 264 с.
- [5] Гришин С.Д., Лесков Л.В., Козлов Н.П. Плазменные ускорители. М.: Машиностроение, 1983. С. 204.
- [6] Морозов А.И., Семашко Н.Н. // Письма в ЖТФ. 2002. Т. 28. Вып. 24. С. 63–66.
- [7] Морозов А.И. Введение в плазмодинамику. М.: Физматлит, 2008. 616 с.
- [8] Арцимович Л.А., Лукьянов С.Ю. Движение заряженных частиц в электрических и магнитных полях. М.: Наука, 1978. 224 с.
- [9] Бардаков В.М., Кичигин Г.Н., Строкин Н.А. // Письма в ЖТФ. 2010. Т. 36. Вып. 4. С. 75–80.
- [10] Петросов В.А., Байдаков С.Г., Баранов В.И. и др. Патент RU № 2196397, МПК Н05Н 1/54, F03H 1/00. Опубл. 10.01.2003 г.