01;03 К определению барнеттовских кинетических коэффициентов в неидеальных средах

© Г.А. Павлов

Институт проблем химической физики РАН, 142432 Черноголовка, Московская обл., Россия e-mail: pavl4411@yandex.ru

(Поступило в Редакцию 11 января 2011 г.)

Обсуждены подходы к определению линеаризованных и нелинейных барнеттовских кинетических коэффициентов в средах с сильным межчастичным взаимодействием. Предложен способ вычисления линеаризованных барнеттовских кинетических коэффициентов с использованием длинноволновых и низкочастотных асимптотик для корреляционных функций заряженных неидеальных сред.

Теория отклика является основой для теоретического исследования теплофизических свойств неидеальных сред, которые характеризуются сильным межчастичным взаимодейстием. Функции реакции в данной теории описывают отклик среды на электрическое и электромагнитное поля, градиенты массовой скорости, температуры, химических потенциалов химических элементов, концентраций химических элементов и т.п. С помощью функций реакции исследуются термодинамические, переносные (реологические) и оптические характеристики неидеальных сред. Теория отклика формулируется как относительно механических, так и термических возмущений. Механические возмущения среды возникают под действием внешних полей, при этом гамильтониан системы является суммой невозмущенного гамильтониана среды и гамильтониана взаимодействия среды с внешним полем. Термические возмущения среды (возмущения температуры, массовой скорости, среднее поле в среде и т.п.), которые не допускают такого описания, инициируют, как и механические возмущения, процессы переноса в среде.

Различают теории линейного и нелинейного откликов. Теория линейного отклика (см., например, [1,2]), используя которую проведены исследования различных свойств неидеальных сред, достаточно хорошо разработана. Изучение линейных характеристик выполнено, в частности, методами компьютерного моделирования для неидеальных кулоновских и нейтральных систем (см., например, [3]). В то же время теория нелинейного отклика развита недостаточно. Для нелинейных функций реакции, соответствующих корреляционных функций, по-существу, отсутствуют как теоретические результаты, так и данные компьютерного моделирования. Поэтому исследования по теории нелинейного отклика являются актуальными.

Рассмотрим подходы к описанию нелинейных переносных процессов. Для расчета линеаризованных и нелинейных барнеттовских кинетических коэффициентов [4] в случае сред со слабым межчастичным взаимодействием (газа или плазмы) применяются кинетические уравнения (например, уравнение Больцмана и др.) и хорошо известный метод Чепмена–Энскога [5]. Определение барнеттовских кинетических коэффициентов неидеальной многоэлементной заряженной среды (плазмы) проведено по варианту теории отклика на термические возмущения, предложенному в [6-8]. Эти результаты могут использоваться и для других сплошных заряженных сред: одно- и двухкомпонентных кулоновских систем, электролитов, жидких металлов, ядерной материи, а также для плотных нейтральных сред. Подход [6-8] заключается в сопоставлении феноменологических уравнений сохранения заряженной сплошной среды и уравнений движения для операторов соответствующих динамических переменных в форме обобщенных уравнений Ланжевена. При выводе уравнений движения операторов динамических переменных использован алгоритм [9,10]. Заметим, что в данном подходе информация о виде уравнений сохранения и потоков массы, тепла, импульса и заряда определяет микроскопические выражения для транспортных коэффициентов в потоках.

В работе обсуждаются подходы к определению линеаризованных и нелинейных (квадратичных) барнеттовских кинетических коэффициентов. Проведено вычисление линеаризованных кинетических коэффициентов через длинноволновый и низкочастотный пределы соответствующих функций реакции и корреляционных функций неидеальной заряженной среды (модельной кулоновской системы).

1. Выпишем систему обобщенных уравнений Ланжевена (ОУЛ), т.е. систему операторных уравнений для неидеальной многоэлементной заряженной среды и для термических возмущений (см., например, [6-10], B(t) — вектор операторов динамических переменных в представлении Гейзенберга, $\rho(t)$ — матрица плотности, H — гамильтониан системы, $\beta = 1/k_BT$, T — температура среды, k_B — константа Больцмана, ехр — упорядоченная экспонента [1])

$$\frac{d}{dt}B(t) - i\omega B(t) + \int_{t_0}^t dt' \varphi(t - t'; t_0)B(t')$$
$$= f(t; t_0) + r(t; t_0)B(t_0),$$

$$\varphi(t;t_0) = Tr\rho(t)$$

$$\times \int_{0}^{\beta} d\lambda e^{\lambda H} f(t;t_0) e^{-\lambda H} f(t_0;t_0) / \langle B(t_0); B(t_0) \rangle,$$

$$r(t;t_0) = Tr\rho(t)$$

$$\times \int_{0}^{t} d\lambda e^{\lambda H} B(t_0) e^{-\lambda H} K(t_0) \bullet \Sigma(t_0 - t; t_0) / \langle B(t_0); B(t_0) \rangle,$$

$$f(t;t_0) = V^+(t,t_0)K(t_0)V(t,t_0);$$

$$V(t,t_0) = \exp\left\{-i(1-P)\int_{t_0}^t dt'H(t')\right\},$$
 (1)

 $r(t;t_0) = 0$ в линейном случае (когда $\rho(t) = \rho_0$, см., например, [10]),

$$Tr\rho(t)\int_{0}^{\beta}d\lambda e^{\lambda H}f(t;t_{0})e^{-\lambda H}B(t_{0})=0,$$

$$\langle A(t); B(t_0) \rangle = Tr\rho(t_0) \int_0^\beta d\lambda e^{\lambda H} A(t) e^{-\lambda H} B(t_0).$$
(1')

Сформулируем определение проекционного оператора (*P*) и другие определения в ОУЛ

$$PG(t) = \frac{\langle G(t); B(t_0) \rangle}{\langle B(t_0); B(t_0) \rangle} \bullet B(t_0),$$

$$B(t) = \sum(t; t_0) \bullet B(t_0) + B'(t),$$

$$\sum(t; t_0) = \langle B(t); B(t_0) \rangle / \langle B(t_0); B(t_0) \rangle,$$

$$B'(t) = (1 - P)B(t), \quad \dot{B}(t_0) = i\omega B(t_0) + K(t_0),$$

$$i\omega = \left[\frac{d}{dt}\Sigma(t; t_0)\right]_{t=t_0}, \quad K(t_0) = (1 - P)\dot{B}(t_0).$$

Нелинейность обобщенного уравнения Ланжевена (1) следует из зависимостей матрицы плотности системы и, следовательно, "частот" ω , "транспортных коэффициентов" $\varphi(t;t_0)$, $r(t;t_0)$ и "случайных сил" $f(t;t_0)$ в этом уравнении от операторов динамических переменных $\{B(t)\}$.

Положим, что сумма третьего члена в левой части и второго в правой части ОУЛ (1) является аналитическим функционалом. Разложим данный функционал, удерживая два члена разложения и принимая во внимание координатную зависимость операторов [6–8], подставим разложение в (1), умножим справа на вектор $B(\mathbf{r})$ и усредним по матрице плотности. Далее подвергнем полученное выражение преобразованию Фурье–Лапласа и получим матричное уравнение для корреляционных функций второго и третьего порядков (первое уравнение в (2)). Второе уравнение в (2) следует из соотношения $zB(\mathbf{k}, z) - B(\mathbf{k}) = -i\mathbf{k}\cdot\mathbf{J}_b$

$$\begin{split} zC_{BB}(k,z) - C_{BB}(k) &= S(k)C_{BB}(k,z) - \Gamma(k,z)C_{BB}(k,z) \\ &- \Gamma_2(k,z)C_{BBB}(k,z), \end{split}$$

$$A \frac{k^2 J_{BB}}{z^2} = -C_{BB}(k, z) + z^{-1} C_{BB}(k) - z^{-2} S(k) C_{BB}(k).$$
(2)

Здесь $A = Vk_BT$; V — объем среды; $C_{BBB}(k, z)$, $C_{BB}(k, z)$, $C_{BB}(k)$, $J_{BB}(k, z)$ — тройные и парные корреляционные функции плотностей и потоков (см. ниже (10), (19)); S(k) соответствует $i\omega$ в (1); $\Gamma(k, z)$, $\Gamma_2(k, z)$ — преобразованиям Фурье–Лапласа от первого и второго членов разложения функционала в ОУЛ. После исключения $C_{BB}(k, z)$ из (2) и расцепления полученного уравнения по степеням волнового вектора kбудем иметь

$$Vk_{B}T \frac{k^{2}J_{BB}}{z^{2}} - \frac{[z - S(k)]C_{BB}(k)}{z^{2}} = -\frac{C_{BB}(k)}{z - S(k) + \Gamma(k, z)},$$
$$Vk_{B}T \frac{k^{2}J_{BB}(\sim k)}{z^{2}} = \frac{\Gamma_{2}(k, z) : C_{BBB}(k, z)}{z - S(k) + \Gamma(k, z)}.$$
(3)

В (3) матрица $[z - S(k) + \Gamma(k, z)]^{-1}$ является сомножителем слева, корреляционная функция потоков ~ k^0 в линейном случае и ~ k в линеаризованном и нелинейном случаях. Первое уравнение в (3) использовано в [2] для исследования обычных кинетических коэффициентов (линейный случай) и в [6–8] — линеаризованных барнеттовских кинетических коэффициентов. Последнее уравнение в (3) применимо для определения нелинейных кинетических коэффициентов [7,8].

2. Согласно подходу [6-8], уравнения (2), (3) сопоставляются с барнеттовскими феноменологическими уравнениями сохранения для сплошной среды. Уравнения сохранения формулируются относительно набора плотностей $\{B(r, t)\}$. Уравнение энергии — плотность Q, уравнения диффузии химических элементов — $\rho_m, c_a,$ уравнение неразрывности — ρ_m , динамические уравнения — v_l и v_t (продольная и поперечная компоненты массовой скорости **u**). Плотности $\{B(r, t)\}$ соответствуют вектору операторов динамических переменных в ОУЛ, операторные определения плотностей приведены, например, в [2]. Уравнения сохранения следует записать при определенном выборе выражений для потоков тепла, массы, заряда и импульса. В этом случае система уравнений сохранения с использованием локальной аппроксимации для нелинейных кинетических коэффициентов после преобразования Фурье-Лапласа сводится к системе алгебраических уравнений [6-8]:

$$zB(k, z) - B(k) = -k^{2}M(k, z)X(k, z) - ik^{3}M_{2}(k, z) : XX,$$

$${}^{t}B = [Q(k, z), \{\rho_{m}c_{a}(k, z)\}, \rho_{m}(k, z), v_{l}(k, z), v_{t}(k, z)],$$

$$Q(k, z) = u(k, z) - \rho_{m}(k, z)(u + p)/\rho_{m},$$

$${}^{t}X = [T(k, z), \{\rho_{m}c_{a}(k, z)\}, \rho_{m}(k, z), v_{l}(k, z), v_{t}(k, z)],$$

$$B = R_{BX}X.$$
(4)

В (4) и — плотность внутренней энергии, p — давление, ρ_m — плотность среды, c_a — массовая доля химического элемента a. Квадратная матрица M и кубическая M_2 содержат соответственно линейные, линеаризованные барнеттовские коэффициенты и нелинейные кинетические коэффициенты, а также термодинамические производные. Сопоставление (4) и (2) дает соотношение между $\Gamma(k, z)$, $\Gamma_2(k, z)$ и матрицами феноменологических кинетических коэффициентов

$$S(k)C_{BB}(k) + k^2 M(k, z)R^{-1}C_{BB}(k) = \Gamma(k, z)C_{BB}(k),$$
$$ik^3 M_2(k, z) : [R_{BX}^{-1}R_{BX}^{-1}] = \Gamma_2(k, z).$$

Данные соотношения и (3) определяют выражения для кинетических коэффициентов в линейном приближении и приближении Барнетта через длинноволновый и низкочастотный пределы соответствующих корреляционных функций ($\tilde{M}_2 = M_2 : [R^{-1}R^{-1}]$, в знаменателе выражений (5) $\Gamma(k, z)$ сохранена для удобства) [6–8]

$$Vk_{B}TJ_{BB} + S(k)C_{BB}(k)k^{-2} = \frac{M(k,z)R_{BX}^{-1}C_{BB}(k)}{1 + [\Gamma(k,z) - S(k)]/z},$$
$$Vk_{B}T\frac{k^{2}J_{BB}(\sim k)}{z^{2}} = \frac{ik^{3}\tilde{M}_{2}(k,z):C_{BBB}(k,z)}{z - S(k) + \Gamma(k,z)}.$$
(5)

Слагаемое с S(k) в левой части первой формулы известно (см., например, в [2]). Для конкретных вычислений кинетических коэффициентов по (5) необходимо использовать длинноволновые пределы матриц в знаменателях выражений (предел $1 + [-S(k) + \Gamma(k, z)]/z$ найден, например, в [2]), длинноволновые пределы корреляторов "плотностей" {B} $C_{BBB}(k, z)$, $C_{BB}(k, z)$, $C_{BB}(k)$ и потоков $J_{BB}(k, z)$ (которые выражаются через корреляторы плотностей), а также термодинамические производные.

Первая формула из (5) для линейного случая может быть переписана в более простом виде, когда в нее входят только парные корреляционные функции. Определения для коэффициентов $\{\alpha\}$ в векторных потоках (6) имеют вид [2]

$$J_{\alpha\beta}(k,z) = \alpha_{\alpha\beta}(k,z) + (\varepsilon^{-1} - 1)\alpha_{\alpha\rho}\alpha_{\rho\beta}/\alpha_{\rho\rho}.$$

Здесь $\varepsilon = 1 + 4\pi\sigma/z$ — диэлектрическая проницаемость, σ — электропроводность среды, индекс " ρ " соответствует объемному заряду в среде, коэффициент $\alpha_{\rho\rho}$ равен $m_e^2\sigma/e^2$ (e, m_e — заряд и масса электрона). Для нейтральных сред и коэффициентов { β } в тензорных потоках последний (поляризационный) член в правой части отсутствует.

3. При вычислении линеаризованных и нелинейных барнеттовских кинетических коэффициентов по выражениям (5) ключевой является информация о длинноволновых пределах корреляторов потоков и $C_{BBB}(k, z)$, $C_{BB}(k, z)$. Длинноволновые пределы тройных корреляционных функций не изучены, что ограничивает возможности вычисления нелинейных коэффициентов. В то же

время разработан аппарат для определения длинноволновых асимптотик $C_{BB}(k, z)$ с помощью соответствующих кинетических уравнений. Данное обстоятельство делает возможным вычисление линеаризованных барнеттовских кинетических коэффициентов из первого соотношения в (5), по крайней мере, для модельных систем. Например, для кулоновских систем, термодинамические и динамические характеристики которых известны (см., например, [3]). Выпишем соответствующие выражения для потоков тепла, массы (заряда) и импульса, которые определяют линеаризованные коэффициенты — α_{qv} , α_{av} , β_{va} , β_{vq} в сплошной многоэлементной заряженной среде. Остальные коэффициенты в (6) — линейные, нелинейные коэффициенты опущены (см., например, [5–8])

$$\mathbf{J}_{q} = -\sum_{a=1}^{N_{a}-1} \alpha_{qa} (\mathbf{L}_{a} - \mathbf{L}_{N_{a}}) - \alpha_{qq} \nabla \ln T - \alpha_{qv} \nabla^{2} \mathbf{u},$$
$$\mathbf{J}_{a} = -\sum_{a=1}^{N_{a}-1} \alpha_{ab} (\mathbf{L}_{b} - \mathbf{L}_{N_{a}}) - \alpha_{aq} \nabla \ln T - \alpha_{av} \nabla^{2} \mathbf{u},$$
$$\hat{\pi} = -\sum_{a=1}^{N_{a}-1} \beta_{va} \langle \nabla (\mathbf{L}_{a} - \mathbf{L}_{N_{a}}) \rangle - \beta_{vq} \langle \nabla \nabla \rangle T - \beta_{vv} \langle \nabla \mathbf{u} \rangle.$$
(6)

Здесь N_a — число химических элементов, образующих среду, $\mathbf{L}_a = T \nabla (\mu_a/T) - \mathbf{F}_a$, $\mu_a(T, \rho_m c_a, \rho_m)$ — удельный химический потенциал химического элемента "*a*"; \mathbf{F}_a — сила на единицу массы элемента *a*, (**cc**) означает неприводимый тензор второго ранга с компонентами $c_i c_k - (1/3)c^2 \delta_{ik}$.

Рассмотрим длинноволновые асимптотики $C_{BB}(k, z)$ в классическом пределе. Выпишем систему кинетических уравнений для корреляционных функций $C^{ab}_{\mu\nu}(\mathbf{k}z)$ (см. подробнее в [2])

$$\sum_{a_1=1,2}\sum_{\lambda=1}^{5} \left[z \,\delta_{\mu\lambda} \delta_{aa_1} - \Omega^{aa_1}_{\mu\lambda}(\mathbf{k}z) \right] C^{a_1b}_{\lambda\nu}(\mathbf{k}z) = i C^{ab}_{\mu\nu}(\mathbf{k}). \quad (7)$$

Здесь

$$C^{ab}_{\mu\nu}(\mathbf{k}z) = \int d\mathbf{p} \, d\mathbf{p}' H^a_{\mu}(\mathbf{p}) C^{ab}(\mathbf{k}z, \mathbf{p}\mathbf{p}') H^b_{\nu}(\mathbf{p}'),$$

$$C^{ab}_{\mu\nu}(\mathbf{k}) = \int d\mathbf{p} \, d\mathbf{p}' H^a_{\mu}(\mathbf{p}) C^{ab}(\mathbf{k}\mathbf{p}\mathbf{p}') H^b_{\nu}(\mathbf{p}')$$

$$= \delta_{\mu\nu} \left[\delta_{ab} + \delta_{\mu n} (n_a/n_b)^{1/2} h^{ab}(k) \right],$$

$$\Omega^{ab}_{\mu\nu}(\mathbf{k}z) = \Sigma^{ab}_{\mu\nu}(\mathbf{k}z) + \sum_{a_1b_1} \langle H^a_{\mu}(\mathbf{p}) | \Sigma^{aa_1} R^{a_1b_1} \Sigma^{b_1b} | H^b_{\nu}(\mathbf{p}') \rangle.$$
(8)

Через линейные комбинации $C^{ab}_{\mu\nu}(\mathbf{k}z)$ можно выразить $C_{BB}(k, z)$ из (5) (см. ниже (19), $N_a = 2$). В (8) $h^{ab}(k)$ — фурье-образ парной корреляционной функции, $R = \bar{Q}(z - \bar{Q}\Sigma\bar{Q})^{-1}\bar{Q}$, где Σ^{ab} соответствует (9), Q —

оператор, дополняющий проекционный оператор P, построенный на полиномах набора $\{H^a_{\mu}(\mathbf{p})\}$. Набор состоит из полиномов

$$n_a^{-1/2}, (\beta/\rho_a)^{1/2} p_z, (\beta/\rho_a)^{1/2} p_x, (\beta/\rho_a) p_y$$
$$(6n_a)^{-1/2} (\beta p^2/m_a - 3), \langle H_i^a H_j^a \rangle = \delta_{ij},$$

И

$$(\beta/10\rho_a)^{1/2}p_z(\beta p^2/m_a - 5)$$

$$\bar{P} = \sum_{a=1,2} \sum_{i=1}^5 |i_a\rangle\langle i_a|, \quad \bar{P} + \bar{Q} = 1, \quad \bar{P}^2 = \bar{P}, \quad \bar{Q}^2 = Q.$$

Здесь элемент i_a соответствует первым пяти из набора полиномов. Матричный элемент $\Sigma^{ab}_{\mu\nu}(\mathbf{k}z)$ соответствует интегралам в (8) от Σ^{ab} — суммы выражений в (9) $(m_b, n_b, \rho_b$ — масса, концентрация и плотность частиц сорта $b, p_{x,y,z}$ — компоненты импульса, $\Phi(p)$ — распределение Максвелла)

$$\Sigma_{0}^{ab}(\mathbf{kpp'}) = (\mathbf{kp}/m_{a})\delta_{ab}\,\delta(\mathbf{p}-\mathbf{p'}),$$

$$\Sigma_{S}^{ab}(\mathbf{kpp'}) = -(\mathbf{kp}/m_{a})\tilde{C}^{ab}(\mathbf{k})(n_{a}n_{b})^{1/2}\Phi^{b}(p),$$

$$\Sigma_{C}^{ab}(\mathbf{k}z,\mathbf{pp'}) = \left(\delta f^{a}(\mathbf{kp})|LQ(z-QLQ)^{-1}QL|\delta f^{b}(\mathbf{kp'})\right)$$

$$\times \left(n_{b}\Phi^{b}(p')\right)^{-1}.$$
(9)

В (9) L — оператор Лиувилля, Q — оператор, дополняющий проекционный оператор P, Q + P = 1 [2]

$$P|g) = \sum_{a_1a_2} \int d\mathbf{p}_1 d\mathbf{p}_2$$

× $\sum_{\mathbf{k}} |\delta f^{a_1}(\mathbf{k}\mathbf{p}_1)) P_{a_1a_2}(\mathbf{k}, \mathbf{p}_1, \mathbf{p}_2) (\delta f^{a_2}(\mathbf{k}\mathbf{p}_2)|g),$
 $P_{a_1a_2}(\mathbf{k}, \mathbf{p}_1\mathbf{p}_2) = \delta_{a_2a_1} \delta(\mathbf{p}_1 - \mathbf{p}_2) (n_{a_1}\Phi_{a_1}(p_1))^{-1}$
 $- \tilde{C}^{a_1a_2}(k)/n_{a_2}.$ (9')

Далее $\langle \ldots \rangle_0$ означает усреднение по равновесному распределению, (|) есть $\langle \ldots \rangle_0 / V$, $\tilde{C}^{ab}(k)$ — прямая корреляционная функция, связанная с $h^{ab}(k)$ соотношением Орнштейна–Цернике (см., например, [2])

$$C^{ab}(\mathbf{k}, z; \mathbf{p}_{1}\mathbf{p}_{2}) = \int_{0}^{\infty} dt e^{izt} \int d(\mathbf{r}_{1} - \mathbf{r}_{2}) e^{-i\mathbf{k}(\mathbf{r}_{1} - \mathbf{r}_{2})} C^{ab}(1, 2t),$$

$$C^{ab}(1, 2t) = \langle \delta f_{1}^{a}(t) \delta f_{2}^{b}(0) \rangle_{0},$$

$$\delta f_{1}^{a}(t) = \sum_{i=1}^{N_{a}} \delta(\mathbf{r}_{1} - \mathbf{r}_{a_{i}}(t)) \delta(\mathbf{p}_{1} - \mathbf{p}_{a_{i}}(t)) - n_{a} \Phi^{a}(p_{1}).$$
(10)

Система уравнений для парных корреляционных функций $C^{ab}_{\mu\nu}(\mathbf{k}z)$ в матричной форме (7) в принципе позволяет найти данные функции и длинноволновые асимптотики корреляционных функций $C_{BB}(k, z)$ из (5). Для

анализа $C^{ab}_{\mu\nu}(\mathbf{k}z)$ используются длинноволновые асимптотики матричных элементов $\Omega^{ab}_{\mu\nu}(\mathbf{k}z)$ (см. подробнее, например, [2]; $v_a = (k_B T / m_a)^{1/2}$)

$$\Omega_{11}^{ab}(\mathbf{k}z) = \mathbf{0}, \quad \Omega_{12}^{ab}(\mathbf{k}z) = kv_a\delta_{ab}, \quad \Omega_{15}^{ab}(\mathbf{k}z) = \mathbf{0},$$

$$\Omega_{21}^{ab}(\mathbf{k}z) = kv_a[\delta_{ab} - (n_a/n_b)^{1/2}\tilde{C}^{ab}(k)],$$

$$\Omega_{22}^{ab}(\mathbf{k}z) = -i[v_{22}^{ab}(z) + k^2D_l^{ab}(kz)],$$

$$\Omega_{33(44)}^{ab}(\mathbf{k}z) = -i[v_{\perp}^{ab}(z) + k^2D_{\perp}^{ab}(kz)],$$

$$\Omega_{25}^{ab}(\mathbf{k}z) = kD_{25}^{ab}(kz), \quad \Omega_{51}^{ab}(\mathbf{k}z) = \mathbf{0},$$

$$\Omega_{52}^{ab}(\mathbf{k}z) = kD_{52}^{ab}(kz),$$

$$\Omega_{55}^{ab}(\mathbf{k}z) = -i[v_{55}^{ab}(z) + k^2D_{5}^{ab}(kz)].$$
(11)

Коэффициенты ν , D в (11) остаются конечными в длинноволновом пределе и при $z \to 0$.

4. В предыдущем разделе определена система уравнений (7) (и соотношения (8)–(11)) для парных корреляционных функций, длинноволновые и низкочастотные пределы которых определяют как обычные кинетические коэффициенты (см., например, [2]), так и линеаризованные барнеттовские кинетические коэффициенты из (6) [6–8]. Ниже получим выражения для длинноволновых асимптотик парных корреляционных функций $C^{ab}_{\mu\nu}(\mathbf{k}z)$, необходимых для расчета значений линеаризованных барнеттовских кинетических коэффициентов двухкомпонентных модельных кулоновских систем с классической статистикой (см., например, [3]) по (5). С этой целью рассмотрим решения линейной системы уравнений (7), которые имеют вид

$$C^{ab}_{\mu\nu}(\mathbf{k}z) = \Delta^{ab}_{\mu\nu}(\mathbf{k}z) / \Delta(\mathbf{k}z), \qquad (12)$$

где $\Delta(\mathbf{k}_z)$ — детерминант системы уравнений (7), $\Delta^{ab}_{\mu\nu}({f k}z)$ — соответствующее алгебраическое дополнение. Прежде чем определить длинноволновые асимптотики $C^{ab}_{\mu\nu}(\mathbf{k}z)$ упростим систему (7), используя инвариантность относительно вращений равновесной функции распределения системы и, следовательно, функции $C^{ab}(\mathbf{k}z, \mathbf{p}_1\mathbf{p}_2)$, которая представляет собой среднее по равновесной функции распределения. Поэтому функция $C^{ab}(\mathbf{k}z, \mathbf{p}_1\mathbf{p}_2)$ может зависеть от трех векторов только через их инвариантные комбинации: $\hat{C}^{ab}(\mathbf{k}z, \mathbf{p}_1\mathbf{p}_2) = \hat{C}^{ab}(z, \mathbf{k}^2, \mathbf{p}_1^2, \mathbf{p}_2^2, \mathbf{k}\mathbf{p}_1, \mathbf{k}\mathbf{p}_2, \mathbf{p}_1\mathbf{p}_2)$, тогда и $C_{\mu\nu}^{ab}(\mathbf{k}z)$ становится равной нулю при условии $\mu = 3, 4(\nu = 3, 4) \neq \nu(\mu)$ и отлична от нуля в противоположном случае. Согласно тем же аргументам, остальные матрицы в (7) становятся равными нулю при условии $\mu = 3, 4(\nu = 3, 4) \neq \nu(\mu)$ и отличны от нуля в противоположном случае. Имеет место факторизация детерминанта $\Delta(\mathbf{k}_z)$ из-за расцепления "поперечных" компонент (3, 4) с "продольными" компонентами (1, 2, 5):

$$\Delta(\mathbf{k}z) \approx \Delta_3(\mathbf{k}z)\Delta_4(\mathbf{k}z)\Delta_l(\mathbf{k}z).$$
(13)

Кинетические коэффициенты $a_{\rho v}$ и $\beta_{v \rho}$ кулоновской системы (межчастичный потенциал [12,13] — $v^{ab}(r) = z_a z_b (e^2/r)$ (1 – $\exp(-r/\lambda_{ab})$), $\lambda_{ab} = \hbar (2\pi m_e k_B T)^{1/2}$, z_a — зарядовое число, параметры системы σ и η взяты из [3,12], $a = (3/4\pi n)^{1/3}$, a_0 — радиус Бора, $2\eta = \beta_{vv}$ (6))

Т,К	n_e, cm^{-3}	$r_s, a/a_0$	$\Gamma, e^2/k_BTa$	$\alpha_{\rho v}, m_e/a_0$	σ, ω_p	$\beta_{v\rho}, m_e/a_0$	η , $m\omega_p n_e a^2$
$6.3\cdot10^5$	$1.6\cdot 10^{24}$	1	0.5	-2.15	1.55	-1.2	1.04 ± 0.21
$1.6 \cdot 10^{5}$	$1.6\cdot 10^{24}$	1	2	-0.54	1.2	-0.43	—

Тогда детерминант можно представить в виде

$$\Delta(\mathbf{k}z) = \prod_{i=1}^{m} (z - z_i).$$
(14)

Набор $\{z_i\}$ представляет собой корни уравнения $\Delta(\mathbf{k}z) = 0, \{z_i\}$ (см., например, [2]) в длинноволновом пределе имеет вид (выписаны только "продольные" корни, ω_p — плазменная частота)

$$z_{\pm}^{s} = \pm \tilde{c}k - ik^{2}\tilde{\Gamma},$$

$$z_{\pm} = \omega_{\pm} + k^{2}\Gamma, \quad \omega_{\pm} = -(i/2)\nu_{\pm} \pm \left[\omega_{p}^{2} - (\nu_{\pm}/2)^{2}\right]^{1/2},$$

$$z_{\varepsilon} = -ik^{2}D_{\varepsilon},$$

$$\tilde{z}_{\varepsilon} = -i(\nu_{\varepsilon} + k^{2}\tilde{D}_{\varepsilon}). \quad (15)$$

Здесь первая пара корней соответствует звуковым модам, вторая — релаксационным зарядовым модам. пятый корень связан с теплопроводностью и последний с обменом энергией между компонентами. В (15) — \tilde{c} — изоэнтропическая скорость звука, {v} — частоты, Γ , D — квадратичные поправки. Форма (14) позволяет представить длинноволновой предел (12) как

$$C^{ab}_{\mu\nu}(\mathbf{k}z) \approx \sum_{i=1}^{m} \frac{a^{ab}_{\mu\nu,i}}{(z-z_i)}.$$
 (16)

В этом случае задача определения длинноволновых пределов $C^{ab}_{\mu\nu}(\mathbf{k}z)$ сводится к определению $\{a_i\}$, используя известный набор $\{z_i\}$, который выписан выше.

Вычислим с помощью (12)–(16), по первой формуле из (5) линеаризованные барнеттовские кинетические коэффициенты, из (6) векторный "вязко-диффузионный" $(\alpha_{\rho\nu})$ и тензорный "диффузионно-вязкий" $(\beta_{\nu\rho})$ для двухкомпонентной кулоновской системы. Выпишем выражения для $\alpha_{\rho\nu}$ и $\beta_{\nu\rho}$:

$$\alpha_{\rho\nu} = \lim_{z \to 0} \lim_{k \to 0} V k_B T J_{\rho\nu}(k, z) C_{VV}^{-1}(k) \varepsilon(ik)^{-1}, \qquad (17)$$

$$\beta_{\nu\rho} = \lim_{z \to 0} \lim_{k \to 0} V k_B T J_{\nu\rho}(k, z) C_{\rho\rho}^{-1}(k) \times (\mu_{\rho}^{\rho} + 4\pi e^2 / k^2)^{-1} (ik)^{-1} (3\rho_m/2).$$
(18)

В (18) в правой части в скобках последнее слагаемое является основным для заряженных сред, при этом в длинноволновом пределе расходимость в (18) отсутствует из-за компенсации сомножителей ($C_{\rho\rho}(k) \sim k^2$), μ_{ρ}^{ρ} —

производная химического потенциала. В (17), (18) корреляторы потоков удобно переписать через корреляторы плотностей, используя второе равенство в (2),

$$Vk_BTJ_{\rho\nu}(k,z) = -\frac{z^2}{k^2}C_{\rho\nu}(k,z),$$
$$Vk_BTJ_{\nu\rho}(k,z) = -\frac{z^2}{k^2}C_{\nu\rho}(k,z).$$

Выразим корреляционные функции плотностей через $C^{ab}_{\mu\nu}(kz)$ и $C^{ab}_{\mu\nu}(k)$ из (7)

$$C_{\nu\rho}(k,z) = \sum_{a,b} C_{21}^{ab}(k,z) \gamma_b (m_a k_B T)^{1/2} n m_e / \rho_m,$$

$$C_{\rho\nu}(k,z) = \sum_{a,b} C_{12}^{ab}(k,z) \gamma_a (m_b k_B T)^{1/2} n m_e / \rho_m.$$
(19)

Фурье-образы корреляционных функций $C_{\rho\rho}(k)$ и $C_{vv}(k)$ из (17), (18) аналогичным образом связаны с $C^{ab}_{\mu\nu}(k)$ из (8). В (19) $\gamma = \pm 1$ в зависимости от знака заряда соответствующей компоненты. Для вычисления временных корреляторов в (19) найдены коэффициенты в разложении (16) $\{a_i\}$ сравнением решения (7) с данным разложением. Учтены члены, определяющие конечные значения кинетических коэффициентов $\sim k^3$ и выше, а также соответствующие порядки по z. Принята во внимание мнимая часть корреляционных функций $C_{\rho v}(k, z)$, $C_{vo}(k, z)$ и в (17) действительная часть диэлектрической проницаемости, значения элементов $\Omega_{25}^{ab}(kz)$, $\Omega_{52}^{ab}(kz)$, матрицы $\Omega^{ab}_{\mu\nu}(kz)$ предполагаются малыми. Необходимая для расчета векторного коэффициента $\alpha_{\rho v}$ мнимая часть $k^2 D_1^{ab}(kz)$ из (11) взята в аппроксимации: $\text{Im} D_l^{ab} \sim 2v_a^2/\omega_{p,a}$ [11].

Значения кинетических коэффициентов $\alpha_{\rho v}$ и $\beta_{v \rho}$ приведены в таблице для модельной кулоновской системы, необходимые для расчетов термодинамические и динамические характеристики которой известны [2,3,12,13]. В таблице для сравнения представлены данные по электропроводности и вязкости для модельной кулоновской системы. Если экстраполировать соотношения между линейными и линеаризованными кинетическими коэффициентами на экспериментальную реализуемую кулоновскую систему (например, неидеальную плазму), то сравнения для данной системы показывают, что вклады в потоки массы (заряда) и импульса от обычных и линеаризованных барнеттовских кинетических коэффициентов, которые зависят от градиентов гидродинамических переменных, различны. В векторном потоке учет линеаризованных коэффициентов излишен, за исключением условий с очень резким изменением параметров, реализующихся, например, в ударной волне. В то же время в тензорном потоке вклады от обычных и линеаризованных кинетических коэффициентов сравнимы и в более мягких условиях. Кинетические коэффициенты "вязко-диффузионный" ($\alpha_{\rho\nu}$) и "диффузионно-вязкий" ($\beta_{\nu\rho}$) не связаны соотношением взаимности Онсагера, так как относятся к потокам различной тензорной размерности. Исследование пары других линеаризованных коэффициентов из (6) $\alpha_{q\nu}$ и $\beta_{\nu q}$ может быть проведено аналогично.

Линеаризованные кинетические коэффициенты образуют матрицу коэффициентов при старших производных в системе уравнений сохранения в квадратичном приближении. Свойства этой матрицы не изучены феноменологическими методами (используя соотношения взаимности, устойчивость относительно диффузии и т. п.) в отличие от линейного случая. Данные свойства задаются, по существу, алгоритмом расчета линеаризованных коэффициентов, который не может быть проконтролирован независимо. Поэтому применение некорректного алгоритма может привести к неадекватным решениям соответствующих задач газо- и гидродинамики для плотных сред.

Таким образом, в работе реализован подход [6-8] на примере вычисления линеаризованных барнеттовских кинетических коэффициентов для неидеальной модельной кулоновской системы. Такой подход применим и для нейтральных плотных сред. Данные, полученные для неидеальной модельной системы, позволяют заключить, что линейные и барнеттовские кинетические коэффициенты при определенных условиях вносят в потоки вклады одного порядка. Заметим, что аналогичные выводы имеют место и для разреженных сред (см., например, [5,14]). Вычисление линеаризованных барнеттовских кинетических коэффициентов важно, поскольку линеаризованные коэффициенты определяют множители при старших производных в системе уравнений сохранения в квадратичном приближении. Использование такого приближения необходимо при исследовании ряда задач: распространения звука, структуры слабых ударных волн, термоконвекции и т.д.

Список литературы

- Зубарев Д.Н. Неравновесная статическая термодинамика. М.: Наука, 1971. 416 с.
- [2] Pavlov G.A. Transport processes in plasmas with strong Coulomb interaction. Amsterdam: Gordon&Breach, 2000. 200 p.
- [3] Hansen J.-P., McDonald I.R. // Phys. Rev. A. 1981. Vol. 23.
 P. 2041.
- [4] Burnett D. // Proc. London Math. Soc. 1935. Vol. 39. Р. 385; Vol. 40. Р. 382. Чепмен С., Каулинг Т. Математическая теория неоднородных газов. М.: ИЛ, 1960. 511 с.
- [5] Галкин В.С., Жаров В.А. // ПММ. 2001. Т. 65. Вып. 3. С. 467–476.

- 5] *Павлов Г.А. //* ЖТФ. 2008. Т. 78. Вып. 6. С. 24–33.
- [7] Pavlov G.A. // J. Phys. A: Math. Gen. 2003. Vol. 36. P. 6019.
- [8] Павлов Г.А. // ЖТФ. 2010. Т. 80. Вып. 4. С. 152–155. Pavlov G.A. // J. Phys. A: Math. Theor. 2009. Vol. 42. P. 214 046.
- [9] Mori H. // Progr. Theor. Phys. 1965. Vol. 34. P. 399.
- [10] Ichiyanagy M.J. // J. Phys. Soc. Japan. 1986. Vol. 35. P. 2963.
- [11] Kugler A. // J. Stat. Phys. 1973. Vol. 8. P. 107.
- [12] Sjogren L., Hansen J.-P., Pollock E.L. // Phys. Rev. A. 1981. Vol. 24. P. 1544.
- [13] Deutsch C. // Phys. Lett. A. 1977. Vol. 60. P. 317.
- [14] Ферцигер Дж., Капер Г. Математическая теория процессов переноса в газах. М.: Наука, 1976. 556 с.