01;03

Вихресток в условиях теплового кризиса с учетом реальных свойств газа

© А.Н. Кучеров

Центральный аэрогидродинамический институт им. проф. Н.Е. Жуковского, 140180 Жуковский, Московская область, Россия email: ank@aerocentr.msk.su

(Поступило в Редакцию 4 октября 2011 г. В окончательной редакции 2 марта 2012 г.)

Обсуждены изменения постановки задачи для вихреисточника и вихрестока при учете изменения коэффициента теплоемкости и показателя адиабаты двухатомного газа (на примере воздуха) с повышением температуры от трехсот до нескольких тысяч градусов Кельвина. Проведено исследование теплового кризиса для вихрестока, вычислены критические значения энергетического параметра. Показано уменьшение минимального радиуса вихрестока при тепловыделении. Варьировались параметры подобия: безразмерная циркуляция (или расход), энергетический параметр, местоположение и толщина области тепловыделения. Выполнены оценки погрешности модели газа с постоянными коэффициентами теплоемкости и показателем адиабаты.

Введение

В работах [1–4] исследовался тепловой кризис в поле течения источника (стока), вихреисточника (вихрестока) в приближении совершенного газа при постоянных теплоемкостях С_p, С_v и показателе адиабаты у. Суть явления теплового кризиса — невозможность стационарного течения с заданным расходом и циркуляцией при достижении радиальной компонентной скорости и величины, равной скорости звука с (и, следовательно, при достижении радиальным числом Маха M_r = u/c значения единица) вследствие тепловыделения в некотором слое поля течения. Исследуемые явления встречаются как фрагменты более сложных течений с теплоподводом в открытом или ограниченном боковыми стенками пространстве. Энергия может быть подведена с помощью лазерного излучения [5-8], электрического разряда [9–14], химических реакций.

В экспериментах и теоретических численных исследованиях отмечены высокие температуры в несколько тысяч градусов, требующие учета реальных свойств газа, в первую очередь, зависимости коэффициентов теплоемкости C_p , C_v и показателя адиабаты γ от температуры. Тепловой кризис в поле вихреисточника (стока) происходит при высоких температурах при большой циркуляции (малом расходе), при значительном удалении области тепловыделения от сечения минимального радиуса, с увеличением показателя адиабаты (переход от многоатомного газа к одноатомному), с увеличением протяженности области энерговыделения [1,15,16]. Возможно увеличение температуры в критическом сечении на порядок и более.

В качестве примера исследуем тепловой кризис в вихрестоке из затопленного пространства для реального воздуха при изменении C_p , C_v , γ с ростом температуры T на порядок по сравнению с температурой T_0 на бесконечности.

Постановка задачи

В диапазоне температур 500–3000 К коэффициенты теплоемкости C_p , C_f и показатель адиабаты γ существенно зависят от температуры [17,18], как показано на рисю 1, кривой 2, эксперимент. Примем для внутренней энергии E_v и теплоемкостей C_v , C_p :

$$E_{v} = \frac{R}{\mu} \left[\frac{5}{2}T + X(T) \right], C_{v} = C_{v0} + \frac{R}{\mu} X_{T}(T), C_{p} = C_{v} + \frac{R}{\mu},$$
(1)
$$X(T) = X_{O_{2}} \frac{T_{O_{2}}}{\exp(T_{O_{2}}/T) - 1} + X_{N_{2}} \frac{T_{N_{2}}}{\exp(T_{N_{2}}/T) - 1},$$

$$X_{T}(T) = \frac{dX}{dT}.$$

Здесь $T_{O_2} = 2228 \text{ K}$, $T_{N_2} = 3336 \text{ K}$ — характеристические колебательные температуры, $X_{O_2} = 0.21$, $X_{N_2} =$

Рис. 1. Коэффициенты теплоемкости $C_p(T)$, $C_v(T)$: 1, 4 — по формуле (1), 2 — эксперимент [18] при давлении 0.1 МРа \approx 1 atm; 3, 5 — C_{p0} , C_{v0} , газ с постоянными тепло-емкостями.

= 0.79 — мольные доли для кислорода и азота, $\mu = \mu_{O_2} X_{O_2} + \mu_{N_2} X_{N_2}, \mu_{O_2} = 32 \text{ kg/kmol}$ — молярная масса са кислорода, $\mu_{N_2} = 28 \text{ kg/kmol}$ — молярная масса азота, $\mu \approx 28.84 \text{ kg/kmol}$ — молярная масса смеси, R — универсальная газовая постоянная, $C_{v0} = 5R/2\mu$ [14,19,20]. На рис. 1 представлены теплоемкости $C_p(T), C_v(T)$, вычисленные по формулам (1), кривые I, 4, а также постоянные теплоемкости C_{v0}, C_{p0} , кривые 3, 5, и экспериментальная зависимость для $C_p(T)$, (кривая 2) [18]. Величина $C_p(T)$ составляет для модели газа с постоянной теплоемкостью 1009 и 1272 J/(K · kg) при T = 3000 K с учетом реальных свойств. Величина $C_v(T)$ возрастает от 720.7 до 984.2 J/(K · kg). Показатель адиабаты $\gamma(T) = C_p(T)/C_v(T)$ уменьшается от значения $\gamma_0 = C_{p0}/C_{v0} = 1.4$ до 1.29.

С учетом изменений C_p , C_v , γ с температурой, уравнения сохранения массы, количества движения, энергии и уравнение состояния запишем в физических переменных [1–4,15,16]:

$$r\rho u = \frac{m_0}{2\pi},\tag{2}$$

$$u\frac{du}{dr} + \frac{1}{\rho}\frac{dp}{dr} - \frac{v^2}{r} = 0 \quad \text{или} \quad V\frac{dV}{dr} + \frac{1}{\rho}\frac{d\rho}{dr} = 0,$$
$$V^2 = u^2 + v^2, \tag{3}$$

$$\frac{dv}{dr} = -\frac{v}{r}, \qquad v = \frac{\Gamma_0}{2\pi r},$$
 (4)

$$\rho u \frac{dH}{dr} = g(r), \quad H = h(T) + \frac{V^2}{2}, \tag{5}$$

$$h = \frac{R}{\mu} \left[\frac{7}{2} T + X(T) \right], \quad g = f(r) \times \begin{cases} g_0, \\ q_0 \rho(r), \end{cases}$$
$$p = \rho T \frac{R}{\mu}. \tag{6}$$

Здесь r — координата, u, v, V — радиальная, азимутальная компоненты скорости и полная скорость, ρ — плотность, p — давление, h, H — энтальпия и полная энтальпия газа, g(r) — интенсивность тепловыделения, $g_0[W/m^3]$, $q_0[W/kg]$ — характерные значения (для двух моделей теплоподвода, в единицу объема и на единицу массы. Принято: $g_0 = \rho_0 q_0$, ρ_0 — характерная плотность), f(r) — безразмерная функция, $m_0[kg(s/m)]$ — физический расход газа на один погонный метр, $\Gamma_0 (m^2/s)$ — физическая размерная циркуляция. Приведем также скорость звука c, полное и радиальное числа Маха М, М_r (М_r — критерий теплового кризиса):

$$c^{2} = \gamma(T)\frac{R}{\mu}T, \quad \gamma(T) = \frac{C_{p}}{C_{v}} = \gamma_{0}\frac{1 + [(\gamma_{0} - 1)/\gamma_{0}]X_{T}}{1 + (\gamma_{0} - 1)X_{T}},$$
$$M^{2} = \frac{V^{2}}{c^{2}}, \qquad M^{2}_{r} = \frac{u^{2}}{c^{2}}.$$
(7)

Отнесем *r* к минимальному радиусу r_0 ($M_r(r_0) = 1$), плотность ρ — к плотности ρ_0 на бесконечности в затопленном пространстве, давление p — к значению p_0

на бесконечности, скорости u, v, V, c — к максимальной скорости $u_0 = \sqrt{2\gamma_0 p_0/(\gamma_0 - 1)\rho_0}$ (достигается при истечении в вакуум), температуру T — к $T_0 = \mu p_0/R\rho_0$, энтальпии h, H — к значению $h_0 = \gamma_0 p_0/(\gamma_0 - 1)\rho_0$. В результате получим безразмерные уравнения

$$r\rho u = m \equiv \frac{m_0}{2\pi\rho_0 u_0 r_0},\tag{8}$$

$$u\frac{du}{dr} + \frac{\gamma_0 - 1}{2\gamma_0\rho}\frac{dp}{dr} - \frac{v^2}{r} = 0$$

или

$$V\frac{dV}{dr} + \frac{\gamma_0 - 1}{2\gamma_0 \rho} \frac{dp}{dr} = 0 \qquad V^2 = u^2 + v^2, \qquad (9)$$

$$rv = \Gamma \equiv \frac{\Gamma_0}{2\pi r_0 u_0},\tag{10}$$

$$\frac{dH}{dr} = \frac{rf(r)}{\gamma_0 m} \times \begin{cases} E\\ Q\rho(r) \end{cases} , \qquad (11)$$

$$E = \frac{(\gamma_0 - 1)g_0 r_0}{u_0 p_0}, \quad Q = \frac{(\gamma_0 - 1)\rho_0 q_0 r_0}{u_0 p_0},$$
$$H = T + h_{\varepsilon} + V^2, \quad h_{\varepsilon}(T) = \frac{(\gamma_0 - 1)X(T)}{\gamma_0 T_0},$$
$$E_v(T) = \frac{T}{\gamma_0} + h_{\varepsilon},$$
$$p = \rho T, \qquad (12)$$
$$c^2 = \frac{\gamma_0 - 1}{T} \frac{\gamma'(T)}{T}$$

$$C = \frac{1}{2} T \frac{\gamma_0}{\gamma_0},$$
$$M_r^2 = \frac{2\gamma_0 u^2}{(\gamma_0 - 1)T\gamma(T)}, \quad M^2 = \frac{2\gamma_0 V^2}{(\gamma_0 - 1)T\gamma(T)}, \quad (13)$$

Здесь m — безразмерный расход газа, Г — безразмерная циркуляция, E, Q — параметры энергоподвода при интенсивности тепловыделения в единицу объема g_0 или на единицу массы q_0 . Интеграл уравнения сохранения энергии (11) есть

$$H = \Phi(r) \equiv 1 + h_{\varepsilon,0} + \frac{1}{\gamma_0 m} \times \begin{cases} EF(r) \\ QF_{\rho}(r) \end{cases},$$
$$F = \int_{r_b}^r f r dr, \qquad F_{\rho} = \int_{r_b}^r \rho f r dr, \qquad (14)$$

где $h_{\varepsilon,0} = h_{\varepsilon}|_{r\to\infty} \approx h_{\varepsilon}(T \approx 1)$ — малая величина при условиях на бесконечности, близких к нормальным. Например, при $T_0 \approx 300$ К находим $h_{\varepsilon,0} \approx 3 \cdot 10^{-4} \ll 1$. Интегральные функции F(r), $F_{\rho}(r)$, $\Phi(r)$ характеризуют энергию (мощность), подведенную к рассматриваемому текущему сечению радиусом r. Начальная и замыкающая координаты области энерговыделения равны $r_{\rm in} = r_1$, $r_{\rm ex} = r_2$ для вихреисточника и $r_{\rm in} = r_2$, $r_{\rm ex} = r_1$ для вихрестока. Тепловое запирание потока наступает при $M_r = 1$ внутри (в пределе — на краю) области теплоподвода. Функция f(r) задана. В работах [1–3,15,16] рассматривались постоянная f = C в интервале $[r_1, r_2]$, линейная $f(r) = C_L(r_2 - r_1)$ и другие функции, нормированные к единице

$$2\pi \int rfdr = 1,$$

при этом постоянные равны

$$C = rac{1}{\pi (r_2^2 - r_1^2)},$$
 $C_L = rac{1}{2\pi \left[-\left(r_2^3 - r_1^3
ight)/3 + r_2 \left(r_2^2 - r_1^2
ight)/2
ight]}$

Параметрами (критериями) подобия, являются безразмерные величины из уравнений и краевых условий: расход *m* (циркуляция Г), параметр энергоподвода *E* (или *Q*), начальная координата $r_{\rm in}$ или число Маха М_{in}, показатель адиабаты γ_0 , совокупность параметров $X_{\rm O_2}$, $X_{\rm N_2}$, $T_{\rm O_2}/T_0$, $T_{\rm N_2}/T_0$, характеризующих отличие воздуха от модели газа с постоянными теплоемкостями и показателями адиабаты.

Вихреисточник (сток) без теплоподвода

Примем, что газ на бесконечности в затопленном пространстве имеет температуру $T_0 = 288.15$ K, давление $p_0 = 101325$ Pa (плотность $\rho_0 \approx 1/22$ kg/m³, стандартная атмосфера на уровне моря [21]). Интеграл сохранения энергии (14) запишем в виде

$$V^{2} = 1 + h_{\varepsilon,0} - T - h_{\varepsilon}(T).$$
(15)

Величина h_{ε} на бесконечности мала и с уменьшением координаты r убывает. Подставляя V^2 из (15) в (9), находим

$$p = \rho^{\gamma_0} \psi(T)^{\gamma_0 - 1}, \qquad p = \frac{T^{\frac{\gamma_0}{\gamma_0 - 1}}}{\psi(T)},$$
$$\rho = \frac{T^{\frac{1}{\gamma_0 - 1}}}{\psi(T)}, \qquad \psi = C_m \exp\left[\int_T^1 \frac{X_T dT}{T}\right]. \tag{16}$$

Условия сохранения полной энтальпии (15) и аналог условия изэнтропичности (16) с точностью до малых поправок $\sim h_{\varepsilon}$ соответствуют выражениям для газа с постоянными теплоемкостями. Постоянную C_m выберем так, чтобы условие $p = \rho^{\gamma_0}$ выполнялось в некоторой точке пространства с параметрами газа (T, p), наиболее близко соответствующими условиям, при которых на практике наблюдают постоянные C_{p0}, C_{v0}, γ_0 . Это может быть сечение минимального радиуса $r = r_m = 1$, удаленное на большое расстояние сечение $r \to \infty$ или любое другое, например начальное для зоны теплоподвода $r = r_{\rm in}$. Если это есть сечение, удаленное на большое расстояние в случае вихрестока, величина $C_m = 1$. Коэффициент $\psi_m = \psi(T_m)$ характеризует отличие связи $p(\rho)$ в сечении минимального радиуса

$$p_m|_{r=1} = \rho_m^{\gamma_0} \psi_m^{\gamma_0 - 1}$$

от соответствующей связи $p_m = \rho_m^{\gamma_0}$ при изэнтропическом течении.

Подставляя $u = m/r\rho$ и $v = \Gamma/r$ в (15), получим решение r(T):

$$r^{2} = \frac{\Gamma^{2} + \frac{m^{2}\psi^{2}(T)}{T^{2/(v_{0}-1)}}}{1 + h_{\varepsilon,0} - T - h_{\varepsilon}}.$$
(17)

Полученное решение незначительно отличается от решения в газе с постоянными теплоемкостями, если малы величины h_{ε} , $|\psi - 1|$. Известный факт — наличие минимального сечения, условие минимума dr/dT = 0 при $T = T_m$, $r = r_m = 1$ и решение (17) дают нам уравнения

$$\frac{m^2 \psi_m^2}{T_m^{2/(\gamma_0 - 1)}} = \frac{\gamma_0 - 1}{2} T_m \frac{\gamma_m}{\gamma_0},\tag{18}$$

$$\frac{m^2 \psi_m^2}{T_m^{2/(y_0-1)}} = 1 + h_{\varepsilon,0} - T_m - h_{\varepsilon,m} - \Gamma^2.$$
(19)

В левой части (18) стоит u_m^2 , в правой — скорость звука c_m^2 , следовательно, при r_m радиальное число Маха равно единице $M_{r,m} = 1$. Приравнивая правые части (18) и (19), находим

$$T_m\left(1+\frac{\gamma_0-1}{2}\frac{\gamma_m}{\gamma_0}\right)+h_{\varepsilon,m}=1+h_{\varepsilon,0}-\Gamma^2.$$
 (20)

Это — основное уравнение для нахождения температуры T_m в сечении минимального радиуса $r_m = 1$. Если задана циркуляция Г, вычислим T_m , затем скорость u_m (скорость звука $c_m = u_m$), расход *m* из (19) и остальные величины ρ_m , p_m , V_m , M_m .

Физическое условие $M_{r,m} = 1$ задает минимальное сечение $r_m = 1$ в вихреисточнике (стоке) для реального газа, так же как и для газа с постоянными теплоем-костями.

Выражения (18), (19) дают связь между расходом m и циркуляцией Γ , как и в газе с постоянными теплоемкостями [1,15]. При h_{ε} , $X_T \ll 1$ из (18), (19) следует известное выражение для газа с постоянными теплоемкостями: $T_m = 2(1 - \Gamma^2)/(\gamma_0 + 1)$.

При $\Gamma = 0$ расход максимален $m = m_{\text{max}}$. Находим T_m из (20), m из (19), u_m из (18), $c_m = u_m$ и остальные величины ρ_m , p_m , V_m , M_m из (16), (15), (13). Удобно задавать расход в долях максимального $m = m_{\text{max}}/n$, где n — число. Если $\Gamma \neq 0$ и задан расход m, величину T_m находим из (18), затем Γ из (19) и величины u_m , ρ_m , V_m , M_m из (18), (16), (15), (13).

При выбранных условиях на бесконечности ($T_0 = 288.15$ K, $p_0 = 101325$ Pa) зависимости $\Gamma(m)$ для воздуха, с учетом изменения $C_p(T)$, $C_v(T)$, слабо отличаются от аналогичных, вычисленных ранее для газа с постоянными теплоемкостями.

Решение (17) дает нам начальные условия на входе в зону теплоподвода при $r = r_{in}$, величины u_{in} , ρ_{in} , p_{in} , V_{in} , T_{in} , $M_{r,in}$, M_{in} для вихреисточника и вихрестока. Внутри зоны энергоподвода достаточно решить одно дифференциальное уравнение для любой искомой величины [15], а для других использовать связи из (8)–(13). Рассмотрим конкретные варианты.

Вихресток из затопленного пространства с теплоподводом

На рис. 2 показаны распределения температуры T(r), радиального и полного числа Маха $M_r(r)$, M(r)(со знаком "-" для сравнения). Для единичной в долях r_0 длины зоны энерговыделения $d = r_2 - r_1 = 1$ варьировали расход *m* (циркуляцию Γ) при $r_1 = 1.1$ (рис. 2, a, b, кривые 1-3) и удаляли зону энергоподвода от минимального сечения (увеличивали r₁ от 1.1 до 2, рис. 2, a, b, кривые 2, 4, 5) при фиксированном расходе $m = m_{\rm max}/4 \approx 0.06469$ (циркуляции $\Gamma \approx$ ≈ 0.6083). Критические значения энергетического параметра $E_{\rm cr}$, интеграла полной мощности $\Phi_{\rm cr}$, температуры $T_{\rm cr}$ и показателя адиабаты $\gamma_{\rm cr}$ равны: кривая $1 - m = m_{\max} \approx 0.2583$ ($\Gamma = 0$), $E_{cr} \approx 0.370$, $\Phi_{\rm cr} \approx 1.1628, \ T_{\rm cr} \approx 279.3 \,{\rm K}, \ \gamma_{\rm cr} \approx 1.399; \ 2 - m_{\rm max}/4 \approx$ (0.6084), $E_{\rm cr}\approx 3.07,$ $\Phi_{\rm cr} \approx 6.402,$ ≈ 0.06469 $T_{\rm cr} \approx 1388 \,{\rm K}, \, \gamma_{\rm cr} \approx 1.3156; \, 3 - m_{\rm max}/8 \approx 0.0323 \,\, (0.707),$ $E_{\rm cr} \approx 7.150, \quad \Phi_{\rm cr} \approx 26.17, \quad T_{\rm cr} \approx 5351 \, {\rm K}, \quad \gamma_{\rm cr} \approx 1.288$ при вариациях расхода (циркуляции); 4 — r₁ = 1.5 $(r_2 = 2.5), \quad E_{\rm cr} \approx 10.25, \quad \Phi_{\rm cr} \approx 19.04, \quad T_{\rm cr} \approx 3971 \, {\rm K},$ 5 — $r_1 = 2$ $(r_2 = 3)$, $E_{\rm cr} \approx 22.40$, $\gamma_{\rm cr} \approx 1.290;$ $\Phi_{
m cr} pprox 40.36, \ T_{
m cr} pprox 8237 \, {
m K}, \ \gamma_{
m cr} pprox 1.2867$ при вариациях координаты r₁. Температура многократно возрастает в обоих случаях, особенно вблизи критического сечения. Показатель адиабаты уменьшается до значений $\gamma \approx 1.287$. Отметим немонотонное изменение полного числа Маха M(r), рис. 2, *b*, кривая 6. Вначале преобладает рост скорости звука, модуль |M(r)|убывает, достигает минимума, затем преобладает рост модуля полной скорости V и величина $|\mathbf{M}(r)|$ растет до критического сечения, в котором $|\mathbf{M}(r)| > 1$.

Рис. 2. Вихресток с теплоподводом по закону f = Cв интервале $[r_1, r_2 = r_{in} = r_1 + 1]$: a — температура T(r)при $r_1 = 1.1 = \text{const}, r_2 = 2.1$ и различном расходе m: кривая $1 - m_{\text{max}} \approx 0.2583$ ($\Gamma = 0$); $2 - m_{\text{max}}/4 \approx$ ≈ 0.06469 (0.60837); $3 - m_{\text{max}}/8 \approx 0.03229$ (0.7071); расход $m = m_{\text{max}}/4 \approx 0.06469 = \text{const}$ (0.60837), координату r_1 варьируем: $4 - r_1 = 1.5$ ($R_2 = 2.5$); $5 - r_1 = 2$ ($R_2 = 3$); b радиальные $M_r(r)$ (кривые 1-5) и полное M(r) (b) числа Маха: $6 - r_1 = 1.1$, $m_{\text{max}}/8$. Пунктир — без теплоподвода, f = 0.

Рис. 3. Зависимости интеграла энергии Φ_{cr} в сечении $r_{cr} = r_1$ от циркуляции Γ (*a*) и от замыкающей координаты r_1 (*b*) при длине зоны d = 1: (*a*) $1 - r_1 = 2$, $2 - r_1 = 1.5$, $3 - r_1 = 1.1$; (*b*) $5 - m_{max}/4$, $6 - 3m_{max}/8 \approx 0.09687$ ($\Gamma \approx 0.5280$); $7 - m_{max}/2 \approx 0.12916$ (0.4541); $8 - m_{max}$; 1a, 3a, 5a, 7a - воздух с постоянной теплоемкостью.

На рис. 3, *a*, *b* приведены зависимости интеграла полной энергии в критическом сечении Φ_{cr} от циркуляции Γ (рис. 3, *a*) при $r_1 = 1.1$ (кривая *I*), 1.5 (2), 2 (3) и от координаты замыкающего сечения области энергоподвода r_1 (рис. 3, *b*) при расходе $m \approx 0.06469$ (циркуляции $\Gamma \approx 0.6084$, кривая 5), 0.0970 (0.528, 6), 0.1293 (0.4542, 7) и 0.2588 ($\Gamma = 0$, кривая 8) для газа с переменной теплоемкостью и постоянной теплоемкостью (кривые *I a*, *3 a*, *5 a*, *7 a*).

В приведенных примерах относительные отличия (от случая газа с постоянной теплоемкостью) по параметру энергоподвода $E_{\rm cr}$ достигают 14.1%, по подведенной энергии $\Phi_{\rm cr}$ — 13.4% по теплоемкости $C_p(T_{\rm cr})$ — 21.3% при $r_1 = 2$, $m \approx 0.09705$ ($\Gamma \approx 0.528$) и $\Delta E_{\rm cr}/E_{\rm cr} \approx 14.8\%$, $\Delta \Phi_{\rm cr}/\Phi_{\rm cr} \approx 14.2\%$, $\Delta C_p/C_p \approx 21.7\%$ при $r_1 = 1.1$, $m \approx 0.0323$ ($\Gamma \approx 0.707$). Заметим, что даже малые расхождения в значениях $E_{\rm cr}$, $\Phi_{\rm cr}$ для моделей газа с постоянной и переменной теплоемкостью могут привести к сильному эффекту: в одном варианте тепловой кризис есть, в другом его нет.

Модель интенсивности тепловыделения g(r) в единицу объема (*E*-вариант) и на единицу массы (*Q*-вариант) также важна. При $\Gamma \approx 0.7767$, $r_1 = 1.1$, d = 0.3 расхождения *Q*- и *E*-вариантов составили $\Delta \Phi_{\rm cr}/\Phi_{\rm cr} \approx 15.1\%$, $\Delta T_{\rm cr}/T_{\rm cr} \approx 15.8\%$.

Течение за зоной энергоподвода. Абсолютно минимальное сечение *r*_{mm}

За зоной энергоподвода течение изэнтропическое в случае газа с постоянной теплоемкостью. С учетом изменения теплоемкостей и показателя адиабаты с ростом температуры для двухатомного газа имеем при $r < r_1 = r_{\text{ex}}$ в вихрестоке:

$$\frac{p(r)}{p_1} = \left(\frac{\rho}{\rho_1}\right)^{\gamma_0} \sigma^{\gamma_0 - 1}(T) = \frac{(T/T_1)^{\gamma_0/(\gamma_0 - 1)}}{\sigma(T)},$$
$$\frac{\rho}{\rho_1} = \frac{(T/T_1)^{1/(\gamma_0 - 1)}}{\sigma(T)}, \quad \sigma = \exp\left[\int_T^{T_1} \frac{X_T dT}{T}\right].$$
(21)

Здесь $p_1 = p(r_1), \rho_1 = \rho(r_1)$. Интеграл сохранения энергии (15) и решение (17) для r(T) примут вид

$$\Phi_{1} = T + h_{\varepsilon}(T) + \frac{1}{r^{2}} \left(\Gamma^{2} + \frac{m^{2}}{\rho^{2}}\right),$$

$$r^{2} = \frac{\Gamma^{2} + \frac{m^{2}\sigma^{2}(T)}{\rho_{1}^{2}(T/T_{1})^{2/(y_{0}-1)}}}{\Phi_{1} - T - h_{\varepsilon}(T)}.$$
(22)

Условие минимума dr/dT = 0 при $r = r_m$ можно записать

$$r_m^2 = \frac{2m^2}{\gamma_0 - 1} \frac{T_1^{2/(\gamma_0 - 1)} \sigma_m^2}{\rho_1^2 T_m^{(\gamma_0 + 1)/(\gamma_0 - 1)}} \frac{\gamma_m}{\gamma_0}.$$
 (23)

Используя решение (22) r(T) при $r = r_m$ и (23), получим уравнение для $T_m = T(r_m)$:

$$\frac{\Gamma^2 + \frac{m^2 \sigma_m^2}{\rho_1^2(T_m/T_1)^{2/(\gamma_0-1)}}}{\Phi_1 - T_m - h_{\varepsilon,m}} = \frac{2m^2}{\gamma_0 - 1} \frac{T_1^{2/(\gamma_0-1)} \sigma_m^2}{\rho_1^2 T_m^{(\gamma_0+1)/(\gamma_0-1)}} \frac{\gamma_m}{\gamma_0}$$
(24)

Вычислив T_m , значение r_m находим из (22) или (23), плотность ρ_m и давление p_m находятся из (21), компоненты скорости u_m , v_m и числа Маха — по формулам (18), (10), (13). При некоторых достаточно больших значениях циркуляции Г координата r_m может быть меньше единицы [4,1]. При $E < E_{cr}$ координата $r_m(E)$ убывает до значения $r_{mm} = \min[r_m(E)]$ (абсолютного минимума) с убыванием E до соответствующего значения E_{mm} , затем вновь начинает расти и обращается в единицу при E = 0. Исследуем тенденции изменения абсолютно минимального радиуса r_{mm} при вариации циркуляции Г, координаты r_1 и толщине зоны d.

На рис. 4, *а* приведены зависимости $r_m(E)$ при циркуляциях $\Gamma \approx 0 - 0.7767$. Максимальные значения температуры составили $T_{\rm cr} \approx 0.9426 - 10.897$ для вариантов 1-6 соответственно. Расхождения со случаем газа с постоянной теплоемкостью максимальны для вариантов 6, 6 а. Погрешность модели газа с постоянной теплоемкостью составила при расчете критических значений энергетического параметра $E_{\rm cr}~({\rm прu}~r_{\rm cr}=r_1=1.1)$ и минимального радиуса r_m (при $E \approx 1.60$) приблизительно 13% и 5% соответственно. На рис. 4, в показаны зависимости абсолютно минимального радиуса $r_{\rm mm}$ (кривые 1), соответствующих значений энергетического параметра $E_{\rm mm}$ (2), а также критические значения параметра энергоподвода $E_{\rm cr}$ (3) от циркуляции Г при $r_1 = 1.1$, d = 0.3 для модели реального воздуха. Величина $r_{\rm mm}$ становится меньше 1 при $\Gamma > 0.56697$.

Рис. 4. a — зависимости минимального радиуса r_m от энергетического параметра E при циркуляциях Γ : $I — \Gamma = 0$, 2 = 0.4541, 3 = 0.60837, 4 = 0.70718, 5 = 0.7475, 6 = 0.7767, 6a — газ с постоянной теплоемкостью; b = I — абсолютно минимальный радиус $r_{\rm mm}$, 2 — энергетический параметр $E_{\rm mm}$, 3 — критические значения $E_{\rm cr}$, 4 — полная энергия $\Phi_{\rm mm}$ как функции Γ ; $f = {\rm const} = 0.4244$, $\gamma_0 = 1.4$, $r_1 = 1.1$, d = 0.3.

Рис. 5. a) — зависимости минимального радиуса $r_m(E)$ при различных координатах r_1 ; $I - r_1 = 1.05$, 2 - 1.1, 3 - 1.2, 4 - 1.5; b) I — абсолютно минимальный радиус $r_{mm}(r_1)$, 2 — соответствующий параметр энергоподвода $E_{mm}(r_1)$, 3 — критический параметр $E_{cr}(r_1)$; $\Gamma \approx 0.7767$, d = 0.3.

С дальнейшим ростом циркуляции Γ (уменьшением расхода *m* от значения 0.00202) величина $E_{\rm mm}$ растет от нуля до некоторого максимального значения $E_{\rm mm} \approx 0.5851$ (при циркуляции $\Gamma \approx 0.8954$), затем начинает убывать (см. кривые 2). Тепловой кризис характеризуется полной энергией $\Phi_{\rm cr} = 1 + h_{\varepsilon,0} + E_{\rm cr}/2\pi\gamma_0 m$, где $F(r_1) = 1/2\pi$ в силу нормировки функции *f*. Абсолютно минимальный радиус $r_{\rm mm}$ характеризуется энергией $\Phi_{\rm mm} = \Phi_1(E_{\rm mm}) = 1 + h_{\varepsilon,0} + E_{\rm mm}/2\pi\gamma_0 m$. При циркуляции $\Gamma > 0.8954$, хотя величина $E_{\rm mm}$ начинает убывать, отношение $E_{\rm mm}/m$ продолжает расти, так что затраченная энергия $\Phi_{\rm mm}$ растет (кривые 4).

На рис. 5, *а* показаны изменения минимального радиуса $r_m(E)$ с ростом координаты r_1 при фиксированной толщине d = 0.3 (зона тепловыделения смещается как целое) и циркуляции $\Gamma \approx 0.7767$. Координата замы-

Рис. 6. Зависимости: а) — минимального радиуса $r_m(E)$ при различных размерах d области энергоподвода, I - d = 0, 2 - 0.1, 3 - 0.3, 4 - 0.4; b) — абсолютно минимального радиуса $r_{\rm mm}(d) - I$, соответствующих значений энергетического параметра $E_{\rm cr}(d) - 3$; c) — температуры в замыкающем сечении $T_1(d) - I$, температуры в сечении абсолютно минимального радиуса $T_{\rm mm}(d) - 2$, критической температуры $T_{\rm cr}(d) - 3$; циркуляция $\Gamma \approx 0.7767$, $r_1 = 1.1$.

кающего сечения r_1 равна 1.05 (кривая I), 1.1 (2), 1.2 (3), 1.5 (4). Абсолютный минимальный радиус r_{mm} (кривая I), соответствующий параметр энергоподвода E_{mm} (2) и критические значения параметра энергоподвода E_{cr} (3) приведены на рис. 5, b как функции r_1 . Величина r_{mm} монотонно убывает, а величины E_{mm} , E_{cr} монотонно растут с ростом координаты r_1 , причем темп изменений нарастает для E_{cr} и убывает для E_{mm} .

На рис. 6, а построены зависимости минимального радиуса r_m от энергетического параметра E при изменении толщины зоны тепловыделения d = 0, 0.1, 0.3, 0.4 при фиксированных координате замыкающего сечения $r_1 = 1.1$ и циркуляции $\Gamma \approx 0.7767$. Начальное сечение для вариантов l, 2, 3, 4 составляет $r_2 = 1.1, 1.2, 1.4, 1.5$. На рис 6, b собраны зависимости от толщины d для абсолютно минимального радиуса $r_{\rm mm}$ (кривая l), энергетического параметра $E_{\rm cr}$ (3). Например, при d = 0.4 абсолютно минимальный радиус равен $r_{\rm mm} \approx 0.7917$, значение энергетического параметра $E_{\rm mm} \approx 3.80$. На рис. 6, c

приведены зависимости от толщины d для температуры в замыкающем сечении энергоподвода $T_1(d)$, температуры абсолютно минимального сечения $T_{\rm mm}(d)$, температуры в критическом сечении $T_{\rm cr}(d)$ при циркуляции $\Gamma \approx 0.7767$. Во всех названных сечениях r_1 , $r_{\rm mm}$, $r_{\rm cr}$ температура нарастает с увеличением d. С ростом d увеличиваются отличия от модели газа с постоянной теплоемкостью.

В пределе d = 0 в сечении $r_1 = r_2$ справедливо уравнение (9) в виде

$$\frac{\gamma_0 - 1}{2\gamma_0} p_1 + \rho_1 u_1^2 = \frac{\gamma_0 - 1}{2\gamma_0} p_2 + \rho_2 u_2^2 \equiv I_2.$$
(25)

Предположим, что $E = E_{\rm cr}$, т.е. сечение r_1 есть критическое. Равенство $M_r = 1$ дает

$$u_{\rm cr} = (\gamma_0 - 1)T_{\rm cr}\gamma_{\rm cr}/2\gamma_0.$$

Уравнения сохранения массы, энергии и уравнение состояния вместе с (25) в критическом сечении $r_{\rm cr} = r_1$ после исключения величин $U_{\rm cr}$, $\rho_{\rm cr}$ дают значения $E_{\rm cr}$ и $T_{\rm cr}$:

$$E_{\rm cr} = 2\pi\gamma_0 m \left[T_{\rm cr} \left(1 + \frac{\gamma_0 - 1}{2} \frac{\gamma_{\rm cr}}{\gamma_0} \right) + h_{\varepsilon,\rm cr} - h_{\varepsilon,0} - 1 + \frac{\Gamma^2}{r_1^2} \right],$$
$$T_{\rm cr} = \frac{2r_1^2 I_2^2 \gamma_{\rm cr} / \gamma_0}{(\gamma_0 - 1)m^2 [(\gamma_{\rm cr} + 1)/\gamma_0]^2}.$$
(26)

В докритическом диапазоне значений энергетического параметра $0 \le E < E_{\rm cr}$ приходим к квадратичному уравнению для $\tau = T_1 + 2h_{\varepsilon,1}\gamma_0/(\gamma_0 - 1)$ или T_1 , которое решается с помощью итераций. В примере рис. 6, *a*, кривая *I*, получили критическое значение энергетического параметра $E_{\rm cr} \approx 0.1695$, абсолютно минимальный радиус $r_{\rm mm} \approx 0.996$ и значение $E_{\rm mm} \approx 0.0255$.

Заключение

Расчет теплового кризиса в реальном газе удобно начинать из областей, близких к изэнтропическим, как в газе с постоянной теплоемкостью. В уравнениях появляются поправки — функции от температуры, которые с ростом температуры становятся существенными в критических сечениях. Поправки растут с увеличением циркуляции, с удалением зоны теплоподвода от минимального сечения, с увеличением толщины зоны тепловыделения.

В докритическом режиме $E < E_{\rm cr}$ за областью теплоподвода координата минимального радиуса r_m может быть меньше первоначального значения $r_m = 1$. Существует абсолютно минимальный радиус $r_{\rm mm} = \min[r_m(E)]$ при некотором значении энергетического параметра $E_{\rm mm}$. Область существования стационарного течения вихрестока возрастает ($r_{\rm mm}$ убывает) вместе с возрастанием энергозатрат $\Phi_{\rm mm} = \Phi_1(E_{\rm mm})$ при увеличении циркуляции, при удалении зоны энероподвода от минимального сечения, с ростом толщины зоны d.

В стоке ($\Gamma = 0$) минимальный радиус r_m всегда больше или равен единице, но в вихрестоке при превышении некоторого значения циркуляции Γ , которое зависит от расположения зоны тепловыделения r_1 и ее протяженности d, появляется абсолютно минимальный радиус $r_{\rm mm}$. Зависимость соответствующего энергетического параметра $E_{\rm mm}$ от циркуляции Γ имеет экстремум максимум.

Работа выполнена при поддержке Государственной программы № П-09 президиума РАН.

Список литературы

- [1] Кучеров А.Н. // ЖТФ. 2011. Т. 81. Вып. 7. С. 35-42.
- [2] Кучеров А.Н. // ИФЖ. 2010. Т. 83. № 5. С. 873-877.
- [3] Kogan M.N., Kucherov A.N. // The 9th International Workshop on Magneto-Plasma Aerodynamics. M., 2010. Proceedings. P.59–69.
- [4] *Кучеров А.Н.* // Ученые записки ЦАГИ. 1983. Т. 14. № 4. С. 47–57.
- [5] Третьяков П.К., Грачев Г.Н., Иванченко А.И., Крайнев В.Л., Пономаренко А.Г., Тищенко В.Н. // Доклады РАН. 1994. Т. 336. № 4. С. 466–467.
- [6] Третьяков П.К., Гаранин Г.Ф., Грачев Г.Н., Крайнев В.Л., Пономаренко А.Г., Тищенко В.Н., Яковлев В.И. // Доклады РАН. 1996. Т. 351. № 3. С. 339–340.
- [7] Борзов В.Ю., Михайлов В.М., Рыбка И.В., Савищенко Н.П., Юрьев А.С. // ИФЖ. 1994. Т. 66. № 5. С. 515–520.
- [8] Зудов В.Н., Третьяков П.К., Тупикин А.В., Яковлев В.И. // Изв. РАН. МЖГ. 2003. № 5 С. 140–153.
- [9] Гридин А.Ю., Ефимов Б.Г., Забродин А.В., Климов А.И. и др. Препринт № 19. М.: ИПМ им. М.В. Келдыша РАН, 1995. 31 с.
- [10] Алферов В.И. // Изв. РАН МЖГ. 2004. № 6. С. 163.
- [11] Ершов А.П., Сурконт О.С., Тимофеев И.Б., Шибков В.М., Черников В.А. ТВТ 2004. Т. 42. № 4. С. 516–522.
- [12] Ершов А.П., Сурконт О.С., Тимофеев И.Б., Шибков В.М., Черников В.А. ТВТ 2004. Т. 42. № 5. С. 669–675.
- [13] Ершов А.П., Сурконт О.С., Тимофеев И.Б., Шибков В.М., Черников В.А. ТВТ 2004. Т. 42. № 6. С. 856–864.
- [14] Громов В.Г., Ершов А.П., Левин В.А., Шибков В.М. ТВТ 2006. Т. 44. № 2. С. 185–194.
- [15] Кучеров А.Н. Препринт ЦАГИ № 158. М.: Издательский отдел ЦАГИ, 2010. 40 с.
- [16] Кучеров А.Н. Препринт ЦАГИ № 157. М.: Издательский отдел ЦАГИ, 2009. 36 с.
- [17] Ландау Л.Д., Лифшиц Е.М. Статистическая физика (Т. 5).
 М.; Наука, 1964. 568 с.
- [18] Физические величины. Справочник. Ред. И.С. Григорьев, Е.З. Мейлихов. М.; Энергоатомиздат, 1991. 1232 сю
- [19] Гриффит В.Ц. "Основные результаты экспериментов на ударных трубах". М.: Гос. изд лит по атомной науке и технике, 1963. С. 267. (Fundamental data obtained from shock-tube experiments. Ed. A. Ferri. Oxford: Pergamon Press, 1961).
- [20] Неравновесные физико-химические процессы в аэродинамике. Ред. Г.И. Майкапар. М.: Машиностроение, 1972. 344 с.
- [21] Глаголев Ю.А. Справочник по физическим параметрам атмосферы. Л.: Гидрометеорологическое изд-во, 1970. 212 с.