06

Метаматериалы с диэлектрическими и металлическими включениями в кубическую решетку

© М.В. Давидович, П.А. Шиловский

Национальный исследовательский университет, Саратовский государственный университет им. Н.Г. Чернышевского, 413026 Саратов, Россия

e-mail: davidovichmv@info.sgu.ru

(Поступило в Редакцию 30 октября 2012 г.)

На основе метода интегральных уравнений, основанного на функции Грина периодически расположенных источников, проанализированы периодические метаматериалы (фотонные кристаллы) в виде простейших металлических и диэлектрических включений в прямоугольную и кубическую решетку в диэлектрической среде (матрице). Рассмотрены случаи диэлектрических включений в виде параллелепипеда и куба, случай подобных металлических включений, идеально проводящие металлические стержни, а также одномерные наноразмерные структуры с металлическими слоями. Металлические включения исследованы при идеальной проводимости и при проникновении поля в металл, который моделируется как электронная плазма. Результаты применимы от сверхвысоких до оптического диапазона частот.

Введение

В последнее время исследование свойств метаматериалов приобретает все большее значение, а число соответствующих публикаций не поддается счету. Метаматериалы можно классифицировать на периодические искусственные среды — фотонные кристаллы (ФК) и композиты или взвеси — непериодические структуры или структуры со случайно расположенными элементами. Реально ФК являются квазипериодическими структурами. Обычно свойства ФК рассматривают в приближении большой длины волны по сравнению с периодом. Часто используют различного рода приближения и модели, не являющиеся строго электродинамическими, т.е. не следующими явно из уравнений Максвелла. Обычно задача состоит в гомогенизации, т.е. получении материальных соотношений, макроскопически описывающих метаматериал [1-8]. Естественно, наиболее просто она решается в длинноволновом приближении, а в резонансной области подобные структуры описываются довольно сложно.

Цель настоящей работы — получить эффективные материальные параметры ФК в виде решетки из прямоугольного параллелепипеда с периодами $a_1, a_2, a_3,$ находящейся в диэлектрической основе с диэлектрической проницаемостью (ДП) є, когда в узлах решетки расположены элементы с ДП $\tilde{\varepsilon}(\omega)$. Упор сделан на получение аналитических результатов в замкнутой форме. Мы считаем є действительной константой, т.е. не рассматриваем дисперсию диэлектрической основы, а ДП включения $\tilde{\varepsilon}(\omega)$ в общем случае комплексная и может быть тензорной. В частности, включения могут быть металлическими, полупроводниковыми, диэлектрическими или в виде пустот. Соответствующая задача для сферических включений впервые была решена в работе [9] и изложена в монографии [10]. Применен метод гомогенизации на основе определения коэффициента отражения при нормальном падении плоской волны, при

этом использовалась бесконечная, а не полубесконечная основа, что затрудняет применение результатов из [10]. Данная работа основана на методе функций Грина периодически расположенных источников, интегральных и интегродифференциальных уравнений [11–14]. Использованы методы гомогенизации, описанные в [5–14].

1. Общая постановка задачи

Рассмотрим трехмерный (3D) ФК, состоящий из диэлектрических включений, внедренных в узлы решетки с периодами a_1, a_2, a_3 соответственно по осям декартовой системы, которые обозначим a_i (i = 1, 2, 3) в среде (матрице) с ДП ε . Будем рассматривать включения с ДП $\tilde{\varepsilon}$ сферической формы радиуса r и в виде параллелепипеда с размерами $\Delta_1, \Delta_2, \Delta_3$. Постановку задачи произведем в общей форме, считая электрические размеры включений большими. Для получения численных результатов использовано приближение малых электрических размеров включений. Включения излучают как вторичные источники с током поляризации

$$\mathbf{J}_{p}(\mathbf{r},\omega) = j\omega\varepsilon_{0}\big(\tilde{\varepsilon}(\omega) - \varepsilon\big)\mathbf{E}(\mathbf{r},\omega). \tag{1}$$

Далее будем использовать скалярную $\Phi\Gamma$ периодически расположенных сфазированных источников (периодическую $\Phi\Gamma$) [11–14]. Свободные (собственные) волны ΦK создают на включениях сдвинутые по фазам токи поляризации, которые в свою очередь и поддерживают (возбуждают) волну. В соответствии с подходом, основанным на методе $\Phi\Gamma$, достаточно получить решение интегрального уравнения (ИУ) в одной (нулевой) ячейке периодичности, при этом использовать только объекты, принадлежащие этой ячейке [11]. То есть решение достаточно искать внутри одного включения, расположенного в нулевой ячейке. Выберем начало координат в центре включения. Электрическое поле имеет вид [11]

$$\mathbf{E}(\mathbf{r}) = \left| \operatorname{grad}(\operatorname{div}) + \tilde{k}^2 \right| \\ \times \int_{V} \tilde{G}(\mathbf{r}, \mathbf{r}', \tilde{k}, \mathbf{k}) \big(\tilde{\varepsilon}(\mathbf{r}', \omega) / \varepsilon - 1 \big) \mathbf{E}(\mathbf{r}') d^3 r'.$$
(2)

Уравнение (2) является объемным и интегральным, поскольку дифференциальный оператор в квадратных скобках действует на координату наблюдения $\Phi\Gamma$ (ядра). Вид $\Phi\Gamma$ приведен в [11,12] и представляет трехмерную сумму плоских волн Флоке со всевозможными направлениями, удовлетворяющих неоднородному волновому уравнению с периодической и сфазированной дельта-особенностью в правой части. В (2) обозначено $\tilde{k} = k_0 \sqrt{\varepsilon}, k_0 = \omega/c$ волновое число в вакууме. Если искать поле в виде

$$\mathbf{E}(\mathbf{r}) = \sum_{i=1}^{3} x_{0i} \sum_{s=1}^{S} e_{is} u_s(\mathbf{r}).$$

где x_{0i} — орты декартовых осей, а $u_s(\mathbf{r})$ — ортогональные функции из некоторого полного базиса, определенного в объеме включения, то из ИУ (2) с использованием метода Галеркина приходим к уравнению det $(\hat{A}(k_0, \mathbf{k})) = 0$. Матрица \hat{A} имеет блочную структуру с блоками \bar{A}_{il} , i, l = 1, 2, 3 соответствуют координатам x_i . Для изотропных однородных включений с восприимчивостью $\chi = \tilde{\epsilon}/\epsilon - 1$ матричные элементы блоков выражаются так (см. [11]):

$$A_{il}^{(ss')} = \delta_{il}\delta_{ss'}u_s^2$$

- $\chi \sum_{m_1-\infty}^{\infty} \sum_{m_2=-\infty}^{\infty} \sum_{m_3=-\infty}^{\infty} \frac{(\tilde{k}^2\delta_{il} - \kappa_{im_i}\kappa_{lm_i})U_{m_1m_2m_3}^{(ss')}}{a_1a_2a_3[\kappa_{x_1m_1}^2 + \kappa_{x_2m_2}^2 + \kappa_{x_3m_3}^2 - \kappa_0^2\varepsilon]}$

Здесь $\kappa_{x_im_i} = k_{x_i} + 2m_i\pi/a_i$, а также введены величины

$$u_{s}^{2} = \int_{V} |u_{s}(\mathbf{r})|^{2} d^{3}r, \quad U_{m_{1}m_{2}m_{3}}^{(ss')} = B_{m_{1}m_{2}m_{3}}^{(s)} B_{m_{1}m_{2}m_{3}}^{(s')*},$$

$$B_{m_{1}m_{2}m_{3}}^{(s)} = \int_{V} \exp(-j\kappa_{m_{1}}x_{1} - j\kappa_{m_{2}}x_{2} - j\kappa_{m_{3}}x_{3})u_{s}(\mathbf{r})d^{3}r.$$
(3)

В случае базисных функций в виде кусочно-постоянных конечных элементов (КЭ), определенных в областях $|x_i - x_{is}| < \Delta x_i/2$, и изотропных однородных включений интегралы в (3) легко вычисляются. Первый имеет вид объема определения КЭ $u_s^2 = \Delta V = \Delta x_1 \Delta x_2 \Delta x_3$. Для второго имеем

$$B_{m_1m_2m_3}^{(s)} = 8 \exp(-j\kappa_{m_1}x_{1s} - j\kappa_{m_2}x_{2s} - j\kappa_{m_3}x_{3s}) \\ \times \frac{\sin(\kappa_{m_1}\Delta x_1/2)\sin(\kappa_{m_2}\Delta x_2/2)\sin(\kappa_{m_3}\Delta x_3)/2}{\kappa_{m_1}\kappa_{m_2}\kappa_{m_3}}.$$
 (4)

Однако использовать кусочно-постоянные функции некорректно. В силу неинтегрируемой особенности ядра суммы в диагональных матричных элементах не сходятся. Это связано с недифференцируемостью разложения поля, тогда как реальное поле достаточно гладкое (имеют место только скачки нормальных компонент на границе включения). Имеется ряд способов трансформации объемных интегральных уравнений к интегродифференциальным уравнениям (ИДУ) с пониженной особенностью [11,15,16]. В настоящей работе для этого авторы используют ряд новых приемов. В первом случае усредним (проинтегрируем) выражение (4) по координате точки наблюдения в окрестности ΔV :

$$\overline{B}_{m_{1}m_{2}m_{3}}^{(s)} = 16 \exp(-j\kappa_{m_{1}}x_{1s} - j\kappa_{m_{2}}x_{2s} - j\kappa_{m_{3}}x_{3s}) \times \frac{\sin^{2}(\kappa_{m_{1}}\Delta x_{1}/2)\sin^{2}(\kappa_{m_{2}}\Delta x_{2}/2)\sin^{2}(\kappa_{m_{3}}\Delta x_{3})/2}{\Delta x_{1}\Delta x_{2}\Delta x_{3}(\kappa_{m_{1}}\kappa_{m_{2}}\kappa_{m_{3}})^{2}}.$$
 (5)

Использовать (5) уже достаточно для вычисления определителя. Есть возможность еще более улучшить сходимость, усреднив и $B_{m_1m_2m_3}^{(s')*}$ по точке наблюдения. Такая усредненная величина комплексно сопряжена к (5).

Рассмотрим простейший случай одной базисной функции для включения в виде параллелепипеда с размерами Δx_i , i = 1, 2, 3. Тогда s = s' = 1 и имеем дисперсионное уравнение (ДУ) в виде определителя третьего порядка

$$\varphi(k_0, \mathbf{k}) = \det\left(\hat{A}(k_0, \mathbf{k})\right) = 0.$$
(6)

Это уравнение приближенно определяет зонную структуру.

Рассмотрим другой способ уменьшения сингулярности ядра ИУ (2). Для этого интегрируем (2) по трем координатам наблюдения в областях $(-\Delta x_i/2, x_i)$. Для левой части (2) имеем

$$\mathbf{F}(x_1, x_2, x_3) = \int_{-\Delta x_1/2}^{x_1} \int_{-\Delta x_1/2}^{x_2} \int_{-\Delta x_1/2}^{x_3} \mathbf{E}(x, y, z) dx dy dx.$$
 (7)

При интегрировании правой части под знаком сумм получается дополнительный множитель

$$V_{m_1m_2m_3} = \frac{\exp(j\kappa_{1m_1}\Delta_1/2 + j\kappa_{2m_2}\Delta_2/2 + j\kappa_{3m_3}\Delta_3/2)}{j\kappa_{1m_1}\kappa_{2m_2}\kappa_{3m_3}}$$

улучшающий сходимость. Для случая малого включения ограничимся одной кусочно-постоянной функцией для каждой компоненты поля. Это означает, что мы задаем три компоненты электрического поля, т.е. три константы. Соответственно (7) принимает вид

$$\mathbf{F}(x_1, x_2, x_3) = \begin{bmatrix} x_{01}E_1 + x_{02}E_2 + x_{03}E_3 \end{bmatrix}$$
$$\times (x_1 + \Delta x_1/2)(x_2 + \Delta x_2/2)(x_3 + \Delta x_3/2)$$

После применения метода Галеркина получаем матричные элементы

,

$$A_{il}^{ss'} = (1/8)\delta_{il}(\Delta x_1 \Delta x_2 \Delta x_2)^2 -\chi \sum_{m_1 - \infty}^{\infty} \sum_{m_2 = -\infty}^{\infty} \sum_{m_3 = -\infty}^{\infty} \frac{(\tilde{k}^2 \delta_{il} - \kappa_{im_i} \kappa_{lm_i}) V_{m_1 m_2 m_3} U_{m_1 m_2 m_3}^{(ss')}}{a_1 a_2 a_3 \left[\kappa_{x_1 m_1}^2 + \kappa_{x_2 m_2}^2 + \kappa_{x_3 m_3}^2 - k_0^2 \varepsilon\right]}.$$
(8)

Интересно заметить, что повторное интегрирование в тех же пределах и применение затем проекционного метода дает

$$\begin{aligned} A_{il}^{ss'} &= (1/36)\delta_{il}(\Delta x_1 \Delta x_2 \Delta x_2)^3 \\ &- \chi \sum_{m_1 - \infty}^{\infty} \sum_{m_2 = -\infty}^{\infty} \sum_{m_3 = -\infty}^{\infty} \frac{(\tilde{k}^2 \delta_{il} - \kappa_{im_i} \kappa_{lm_l}) V_{m_1 m_2 m_3}^2 U_{m_1 m_2 m_3}^{(ss')}}{a_1 a_2 a_3 \left[\kappa_{x_1 m_l}^2 + \kappa_{x_2 m_2}^2 + \kappa_{x_3 m_3}^2 - k_0^2 \varepsilon\right]} \end{aligned}$$

Соответствующие ряды сходятся очень быстро.

Далее будем использовать форму ДП-включения $\tilde{\varepsilon}(\omega) = \varepsilon_r - \omega_p^2 / [\omega(\omega - j\omega_c)]$, характерную для плазмы полупроводников или металлов, и считать все размеры одинаковыми и равными Δ . Здесь ε_r — относительная ДП кристаллической решетки металла (полупроводника), которую будем считать константой с малой мнимой частью (т.е. пренебрегать дисперсией в рассматриваемом диапазоне). При $\omega_p^2 = 0$ получаем модель недиспергирующей среды с потерями. Для того чтобы поле было постоянным в металлической частице, ее размеры должны быть существенно меньше скин-слоя $\delta = 1/\alpha$, при этом длина волны в ней $\Lambda = \delta/2\pi$. Естественно, длина волны $\tilde{\lambda}$ в основе больше размеров a_i и существенно больше Δ . Здесь обозначено затухание в плазме включения

$$\alpha = k_0 \sqrt{\frac{\left[\varepsilon_r \left[(\omega^2 + \omega_c^2)\right] - \omega_p^2\right]^2 + \omega_p^4 \omega_c^2 / \omega^2 - \left[\varepsilon_r (\omega^2 + \omega_c^2) - \omega_p^2\right]}{2(\omega^2 + \omega_c^2)}}$$

Будем использовать проинтегрированное по точке наблюдения интегральное уравнение и тот факт, что амплитуда поля в частице распределена по гиперболическому косинусу по каждой из координат. Действительно, при падении плоской волны на полуплоскость поле в последней затухает экспоненциально по нормали с коэффициентом а. Для конечного слоя при падении волны одинаковой амплитуды с обеих сторон получим гиперболический косинус. Для малой кубической частицы конечных размеров с центром в начале координат получим в качестве хорошего приближения гиперболический косинус для зависимости амплитуды поля от каждой из координат. Если считать, что фазы полей зависят экспоненциально от фазовой постоянной β и симметричны по координатам, то для компонент поля имеем приближенную зависимость

$$E_{i} = E_{0i} \frac{\operatorname{ch}(\alpha x_{1})\operatorname{ch}(\alpha x_{2})\operatorname{ch}(\alpha x_{3})}{\operatorname{ch}^{2}(\alpha \Delta/2)}$$

$$\times \exp\left(-j\beta\left[(\Delta/2 - |x_{1}|) + (\Delta/2 - |x_{2}|) + (\Delta/2 - |x_{3}|)\right]/3\right)$$
(9)

Здесь E_{0i} — компоненты поля на поверхности частицы. Величину β можно выписать аналогично α . Данная аппроксимация соответствует тому, что волна распространяется от поверхности частицы в ее глубину. В этом приближении для сферического включения радиус шара следует взять из условия $r = \Delta \sqrt[3]{3/(4\pi)}$ равенства его объема объему параллелепипеда. После интегрирования (2) имеем ИУ

$$\mathbf{F}(\mathbf{r}) = \chi(\omega) \int_{V} \tilde{K}(\mathbf{r}, \mathbf{r}', \tilde{k}, \mathbf{k}) \mathbf{E}(\mathbf{r}') d^{3}r',$$

где тензорное ядро образовано с учетом приведенных соотношений и имеет компоненты

$$\tilde{K}_{il}(\mathbf{r}, \mathbf{r}', \tilde{k}, \mathbf{k}) = \sum_{m_1 - \infty}^{\infty} \sum_{m_2 = -\infty}^{\infty} \sum_{m_3 = -\infty}^{\infty} \frac{V_{m_1 m_2 m_3}(\tilde{k}^2 \delta_{il} - \kappa_{im_i} \kappa_{lm_l}) \exp(-j\mathbf{k}_m(\mathbf{r} - \mathbf{r}'))}{a_1 a_2 a_3 [\kappa_{x_1 m_1}^2 + \kappa_{x_2 m_2}^2 + \kappa_{x_3 m_3}^2 - \kappa_0^2 \varepsilon]}.$$

Здесь обозначено

$$\exp(-j\mathbf{k}_m(\mathbf{r}-\mathbf{r}')) = \exp(-j\kappa_{1m_1}(x_1-x_1') - j\kappa_{2m_2}(x_2-x_2') - j\kappa_{3m_3}(x_3-x_3')).$$

Далее образовываем функционал

$$\Phi(k_0, \mathbf{k}) = \int_M \mathbf{E}^*(\mathbf{r}) \mathbf{F}(\mathbf{r}) d^3 r$$
$$-\chi(\omega) \int_V \int_V \mathbf{E}^*(r) \tilde{K}(\mathbf{r}, \mathbf{r}', \tilde{k}, \mathbf{k}) \mathbf{E}(\mathbf{r}') d^3 r' d^3 r.$$

В нашем случае учета трех компонент поля с тремя их значениями на поверхности частицы функционал превращается в билинейную форму

$$\overline{\Phi}(k_{0}, \mathbf{k}, E_{0l}, E_{0i}^{*}) = 8 \left[\frac{\operatorname{th}(\alpha \Delta/2)}{\alpha} \right]^{6} \sum_{i=1}^{3} |E_{0i}|^{2} - \chi(\omega)$$

$$\times \sum_{i=1}^{3} \sum_{l=1}^{3} \sum_{m_{1}-\infty}^{\infty} \sum_{m_{2}=-\infty}^{\infty} \sum_{m_{3}=-\infty}^{\infty} \frac{V_{m_{1}m_{2}m_{3}}(\bar{k}^{2}\delta_{il} - \kappa_{im_{i}}\kappa_{lm_{l}})(W_{1m_{1}}W_{2m_{2}}W_{3m_{3}})^{2}}{a_{1}a_{2}a_{3}[\kappa_{x_{1}m_{1}}^{2} + \kappa_{x_{2}m_{2}}^{2} + \kappa_{x_{3}m_{3}}^{2} - k_{0}^{2}\epsilon]}$$

$$\times E_{0i}^{*}E_{0i}. \tag{10}$$

Здесь

$$W_{im_i}=2$$

$$\times \frac{\kappa_{im_i}\sin(\kappa_{im_i}\Delta/2)\mathrm{ch}(\alpha\Delta/2) + \alpha\mathrm{sh}(\alpha\Delta/2)\cos(\kappa_{im_i}\Delta/2)}{(\kappa_{im_i}^2 + \alpha^2)\mathrm{ch}(\alpha\Delta/2)}.$$
(11)

При этом для малых β фазовый множитель в (9) сократился при умножении на комплексно-сопряженное поле. На самом деле этот результат приближенный: надо интегрировать множитель $\exp(-j\mathbf{k}_m\mathbf{r})$ с функцией (9) по штрихованным и нештрихованным координатам. При этом возникают интегралы

$$W_{im_i} = \int_{-\Delta/2}^{\Delta/2} \frac{\operatorname{ch}(\alpha x_i)}{\operatorname{ch}(\alpha \Delta/2)} \exp\left(-j\beta(\Delta/2 - |x_i|)/3 + j\kappa_{im_i}x_i\right) dx_i.$$
(12)

Обозначив

$$g_i(lpha,eta,\kappa_{im_i}) = rac{\exp(j\kappa_{im_i}\Delta/2+lpha\Delta/2)-\exp(-jeta\Delta/6)}{2\mathrm{ch}(lpha\Delta/2)(jeta/3+j\kappa_{im_i}+lpha)},$$

получим

$$W_{im_i} = g_i(\alpha, \beta, \kappa_{im_i}) + g_i(-\alpha, \beta, -\kappa_{im_i}) + g_i(-\alpha, \beta, \kappa_{im_i}) + g_i(\alpha, \beta, -\kappa_{im_i}).$$

При малых β коэффициенты (12) определяются соотношением (11), при этом α невелико. При больших α также большое и β , при этом получим

$$W_{im_i} pprox rac{2\cos(\kappa_{im_i}\Delta/2)}{(lpha+jeta/3)}$$

Таким образом, в общем случае в правую часть (10) вместо (11) входят множители $|W_{im_i}|^2$. Приведенные оценки справедливы при небольших индексах. Из условий $(\partial/\partial E_{0i}^*)\overline{\Phi}(k_0, \mathbf{k}, E_{0i}, E_{0i}^*) = 0$ получаем систему трех линейных алгебраических уравнений (СЛАУ), равенство нулю определителя которой дает искомое ДУ (6). Соответствующие матричные элементы имеют вид

$$A_{il}(k_0, \mathbf{k}) = 8 \left[\frac{\text{th}(\alpha \Delta/2)}{\alpha} \right]^6 \delta_{il} - \chi(\omega)$$
$$\times \sum_{m_1 - \infty}^{\infty} \sum_{m_2 = -\infty}^{\infty} \sum_{m_3 = -\infty}^{\infty} \frac{V_{m_1 m_2 m_3}(\bar{k}^2 \delta_{il} - \kappa_{im_i} \kappa_{lm_l}) |W_{1m_1} W_{2m_2} W_{3m_3}|^2}{a_1 a_2 a_3 [\kappa_{x_1 m_1}^2 + \kappa_{x_2 m_2}^2 + \kappa_{x_3 m_3}^2 - \kappa_0^2 \varepsilon]}$$

Рассмотрим два случая. Первый — затухание большое $(\alpha \Delta \gg 1)$, т.е. толщина скин-слоя мала, $\alpha \approx \beta$. Тогда первый член в (10) мал и равен $8\delta^6 \delta_{il}$. При фиксированных индексах m_i

$$W_{im_i} pprox rac{2\delta\cos(\kappa_{im_i}\Delta/2)}{(1+j)}$$

Эти величины малы, а правая часть (10) имеет тот же порядок по δ . Максимальный вклад в значение определителя типа (6) вносят члены в рядах с малыми индексами в силу хорошей сходимости. В случае $\alpha \to 0$ поле однородно, первый член есть $8(\Delta/2)^6 \delta_{il}$, и имеем коэффициенты

$$W_{im_i} = \Delta \frac{\sin(\kappa_{im_i}\Delta/2)}{\kappa_{im_i}\Delta/2}$$

С учетом (6) при малых Δ форма (10) переходит в (8), что и следовало ожидать для однородного поля. В общем случае рассмотренный ФК является трехосным и описывается тензором эффективной ДП

$$\hat{\varepsilon}(k_0, \mathbf{k}) = \begin{vmatrix} \varepsilon_{11} & 0 & 0 \\ 0 & \varepsilon_{22} & 0 \\ 0 & 0 & \varepsilon_{33} \end{vmatrix}.$$

Если решетка кубическая с периодом a и включения являются кубическими с ребром Δ или сферическими, то

приходим к изотропному метаматериалу с ДП $\varepsilon_e = \varepsilon_{ii}$. В силу формулы (1) имеем дипольный момент единицы объема

$$\mathbf{P}(\mathbf{r},\omega) = \varepsilon_0 \left(\tilde{\varepsilon}(\omega) - \varepsilon \right) \mathbf{E}(\mathbf{r},\omega).$$

Здесь стоит электрическое поле в частице, которое следует усреднить. Для малой прозрачной частицы его компоненты равны E_{0i} . Для поглощающей частицы усредним поле (9):

$$\overline{E}_i = \frac{E_{0i} \text{th}^3(\alpha \Delta/2)}{(\alpha \Delta/2)^3}.$$

Таким образом, для прозрачной частицы ($\alpha = 0$) $E_i = E_{0i}$, тогда как для сильно поглощающей частицы $\alpha \Delta \gg 2$ компоненты среднего поля \overline{E}_i существенно меньше, чем на поверхности. Соответственно во втором случае мы должны сделать в (10) замену $E_{0i} = \overline{E}_i (\alpha \Delta/2)^3 / \text{th}^3 (\alpha \Delta/2)$ и наложить условия $(\partial/\partial \overline{E}_i^*) \overline{\Phi}(k_0, \mathbf{k}, \overline{E}_i, \overline{E}_i^*) = 0$, что приводит к СЛАУ и несколько модифицированному ДУ типа (6) в виде равенства нулю ее определителя. Рассчитанный по ячейке средний дипольный момент единицы объема равен

$$\overline{\mathbf{P}} = (\Delta/a)^3 \varepsilon_0 \left(\tilde{\varepsilon}(\omega) - \varepsilon \right) \overline{\mathbf{E}}.$$
(13)

Обычно при вычислении поляризации используют дипольные моменты [1–13]. Более тщательный подход требует вычисления и высших мультипольных моментов [17]. Естественно, они зависят от поля и направления распространения волны, т.е. от волнового вектора. В симметричном случае в дипольном приближении эффективная ДП — скаляр. Поэтому в (13) можно взять любые компоненты. Определим компоненты усредненного электрического поля по ячейке

$$\langle E_i \rangle = \frac{1}{a^3} \int_{-a/2}^{a/2} \int_{-a/2}^{a/2} \int_{-a/2}^{a/2} E_i(\mathbf{r}) d^3 \mathbf{r}.$$

Пусть дисперсионное уравнение решено, т.е. зависимость (6) получена. Обозначим дифференциальный оператор $\hat{L} = \operatorname{grad}(\operatorname{div}) + \tilde{k}^2 = \nabla \otimes \nabla + \tilde{k}^2 \hat{I}$ и введем тензор $\hat{G}(\mathbf{r}, \mathbf{r}', \tilde{k}, \mathbf{k}) = \hat{L}\tilde{G}(\mathbf{r}, \mathbf{r}', \tilde{k}, \mathbf{k})$ и усредним (2)

$$\langle E_i \rangle = \int\limits_V \langle \hat{G}(\mathbf{r}, \mathbf{r}', \tilde{k}, \mathbf{k}) \rangle (\tilde{\varepsilon}(\mathbf{r}', \omega) / \varepsilon - 1) \mathbf{E}(\mathbf{r}') d^3 r'.$$

Для однородного включения, воспользовавшись теоремой о среднем, получаем $\langle E_i \rangle = (\tilde{\varepsilon}(\omega)/\varepsilon - 1) g_{ii}(\tilde{k}, \mathbf{k}) \overline{E}$. Здесь функция $g_{ii}(\tilde{k}, \mathbf{k})$ получена усреднением $\hat{G}(\mathbf{r}, \mathbf{r}', \tilde{k}, \mathbf{k})$ по координате \mathbf{r} и интегрированием по объему частицы по координате \mathbf{r}' . Таким образом, она безразмерная. Отсюда для эффективной ДП имеем

$$\varepsilon_e(k_0, \mathbf{k}) = 1 + \frac{\overline{P}_i}{\varepsilon_0 \varepsilon \langle E_i \rangle} = 1 + (\Delta/a)^3 / g_{ii}(\tilde{k}, \mathbf{k}).$$
(14)

Нетрудно видеть, что элементы диагонального тензора для включения в виде параллелепипеда объема $V = \Delta_1 \Delta_2 \Delta_3$ будут иметь вид

$$arepsilon_{eii}(k_0,\mathbf{k}) = 1 + rac{V}{a^3 g_{ii}(ilde{k},\mathbf{k})}.$$

При вычислении указанных величин следует интегрировать функции типа $\exp(-j\kappa_{im_i}x_i)$, входящие в ядра. В качестве интервала усреднения можно взять (0, a), при этом получаются комплексные значения. Мы будем брать интервалы симметрично: (-a/2, a/2). Тогда среднее значение экспоненты $\exp(-ik_{xm}x)$ есть

...

/ ...

× /

$$e_{xm}(k_x, a) = \langle \exp(-ik_{xm}x) \rangle$$
$$= \frac{1}{a} \int_{-a/2}^{a/2} \exp\left(-i\left[k_x + \frac{2m\pi}{a}\right]x\right) dx$$
$$= \frac{2}{a} \frac{(-1)^m \sin(k_x a/2)}{k_x + 2m\pi/a}.$$

Если поле сильно затухает во включении (что имеет место при сильном скин-эффекте), то можно считать, что оно отсутствует внутри частицы. Обозначим $\Delta = r/\sqrt{\pi}$. Тогда с учетом сказанного усреднение имеет вид

$$\tilde{e}_{xm}(k_x, a, \Delta) = e_{xm}(k_x, a) - e_{xm}(k_x, \Delta)$$

$$= \frac{2}{a} \int_{r\sqrt{\pi}}^{a/2} \cos\left(\left[k_x + \frac{2m\pi}{a}\right]x\right) dx$$

$$= \frac{2}{a} \frac{(-1)^m \sin(k_x a/2) - \sin\left(\left[k_x + \frac{2m\pi}{a}\right]\Delta\right)}{k_x + 2m\pi/a}.$$

Случай идеально проводящих включений

В этом случае вводим ток проводимости. В нашем простейшем случае заменим поверхностные токи на дипольные в центре включения:

$$\mathbf{J}(\mathbf{r}) = \delta(x_1)\delta(x_2)\delta(x_3)\sum_{i=1}^3 \mathbf{x}_{0i}I_i.$$
 (15)

Здесь I_i — моменты тока. ИУ (2) модифицируется заменой ($\tilde{\epsilon}(\omega) - \epsilon$) $\mathbf{E}(\mathbf{r}, \omega)$ на $(j\omega)^{-1}\mathbf{J}(\mathbf{r})$. Налагаем в ИУ (2) граничные условия в центрах трех граней для компонент полей параллельных токам в (15). В этом случае также получаем СЛАУ из трех уравнений и ДУ в виде равенства нулю ее определителя. Соответствующая (15) плотность заряда есть

$$\rho(\mathbf{r}) = i\omega^{-1} [I_1 \delta'(x_1) \delta(x_2) \delta(x_2) + I_2 \delta'(x_2) \delta(x_1) \delta(x_3) + I_3 \delta'(x_3) \delta(x_1) \delta(x_2)],$$

а компоненты дипольного момента и поля вычисляют так:

$$P_{i} = \overline{P}_{i} \int_{V} x_{i} \rho(\mathbf{r}) d^{3}r = -j\omega^{-1}I_{i},$$
$$E_{i}(\mathbf{r}) = (j\omega\varepsilon_{0})^{-1}\hat{G}_{il}(\mathbf{r}, 0, \tilde{k}, \mathbf{k})I_{i}.$$
(16)

По повторяющемуся индексу подразумевается суммирование. Выражение (16) усредним по ячейке. Тогда формулу (14) можно использовать для определения ДП. Метаматериал в виде трехмерно-периодических идеально проводящих металлических включений в виде штырей длины l < a, ориентированных по оси z, рассмотрен в работах [13,14].

3. Численные результаты

На основе модели [13,14] на рис. 1,2 даны зонные диаграммы (Γ -X и M- Γ -X-M) в зависимости от числа учитываемых гармоник осевого тока на штырях и от их длины. Величина N означает число гармоник тока, M — верхний предел в трехмерных суммах. На рис. 3 приведен центр зонной диаграммы для идеально проводящего кубического металлического включения в кубическую решетку. При построении зонной структуры металлических фотонных кристаллов (МФК) с диссипацией возникает сложная проблема поиска корней определителя в комплексной плоскости. При этом имеются

Рис. 1. Зонная диаграмма Брюллиэна для l/a = 0.5 при N = 1 (*I*), N = 9 (*2*), r/a = 0.05, a = b = c, $\varepsilon = 1$, M = 30.

Рис. 3. Дисперсия в МФК с кубическими включениями в кубическую решетку при $\Delta/a = 0.1$ ($k_{y=k_z} = 0$).

две характерные частоты ω_p и ω_c , от которых существенно зависит зонная структура. Сложность поиска комплексных корней состоит и в том, что они чередуются с полюсами ФГ [13]. Для выяснения характера зонной структуры поступим следующим образом. Рассмотрим зону с $k_y = k_z = 0$ и заменим трехмерный (3D) ФК одномерно-периодическим (1D) ФК с металлическим слоем по оси x, занимающим ту же долю в периоде, что и металлический куб в ячейке. Указанная 1D задача имеет аналитическое решение [11,12]. Его результаты представлены на рис. 4 и 5. Они показывают, как изменяется зонная структура в случае неидеального металла и представляют потери в таком ФК. Именно в области низких частот запрещенных зон нет, имеет место большое поглощение, а также чередование областей аномальной и нормальной дисперсий. Заметим, что наличие областей аномальных дисперсий характерно и для волноводов с потерями на частотах ниже отсечек для соответствующих идеальных волноводов [18-20]. На рис. 6 показана та же зонная структура в идеальном случае отсутствия проводимости ($\omega_p = 0$). Для МФК это реализуется при $\omega \gg \omega_p$, что обычно (для хорошо проводящих металлов) соответствует жесткому ультрафиолетовому диапазону. Рис. 7 демонстрирует диэлектрический ФК с идеальным и неидеальным диэлектрическим кубическим включением. Первый случай реализуется при большой частоте ($\omega_p \ll \omega, \omega_c \ll \omega$), когда $\tilde{\varepsilon} = \varepsilon_r - j\omega_c \omega_p^2 / \omega^3$, а также при $\omega_p \ll \omega, \omega_c \gg \omega$, когда $\tilde{\varepsilon} = \varepsilon_r - j\omega_p^2/(\omega\omega_c)$ и $\omega_p^2/(\omega\omega_c) \ll 1$, т.е. проводимость мала: $\sigma = \varepsilon_0 \omega_p^2 / \omega_c \ll \varepsilon_0 \omega$. Всегда при этом мала и мнимая часть ДП. В области низких частот имеет место существенное различие свойств 1D и 3D МФК. Для первых имеет место туннелирование волн через слои с большими отрицательными действительной и мнимой частями ДП. При этом зоны bandgap отсутствуют и появляются только в области $\omega \gg \omega_p$. Для вторых имеет место почти упругое рассеяние волн (фотонов), что приводит к зонной структуре на низких частотах. В области миллиметрового, субмиллиметрового и особенно инфракрасного диапазонов, включая и часть оптического диапазона, МФК не имеют резкой зонной структуры в силу сильных потерь. Вообще, даже малые потери

Рис. 4. Дисперсия одномерного МФК с алюминиевым слоем толщиной 19 nm и периодом d = 188 nm: $\varepsilon_r = 9.8 - 0.001 j$, $\omega_p = 2.2 \cdot 10^{16}$, $\omega_c = 1.35 \cdot 10^{15}$. Проницаемость основы $\varepsilon_2 = 1$ (вакуум).

Рис. 5. Нормированные потери на ячейку периодичности для МФК (рис. 4).

приводят к смыканию ветвей прямых и обратных волн (рис. 4–6), но в областях смыкания потери велики, что соответствует нераспространению для идеального случая.

В результате можно сделать следующие выводы. Идеальный недиссипативный ФК может иметь полные или частичные запрещенные зоны (рис. 1–3, 7). Это соответствует самосопряженной задаче на собственные значения и сохранению числа фотонов. В нереляти-

Рис. 6. Дисперсия одномерного диэлектрического ΦK с размерами, соответствующими рис. 5, и параметрами: $\varepsilon_r = 9.8 - 0.001 j$ ($\omega_p = 0$), $\varepsilon_2 = 1$ (точки I — вакуум); $\varepsilon_2 = 3.2 - 0.0003 j$ (точки $2 - SiO_2$).

Рис. 7. Дисперсия в диэлектрическом кубическом ΦK с ребром куба $\Delta = 0.2a$, $\tilde{\varepsilon} = 3.7$ (сплошные кривые) и $\tilde{\varepsilon} = 3.7-0.3j$ (штриховые кривые). Проницаемость матрицы $\varepsilon = 1$.

Рис. 8. Коэффициент прохождения по мощности теплового экрана в виде четырех периодов со слоями металла 30 nm и слоями SiO₂ 300 nm в зависимости от длины волны: кривая 1 — алюминий, 2 — никель, 3 — хром.

висткой квантово-механической задаче для кристалла сохраняется вероятность (число частиц). Это приводит к наличию электронных запрещенных зон. В диссипативном периодическом ФК фотоны поглощаются, а их число не сохраняется. Это соответствует смыканию дисперсионных ветвей прямых и обратных волн в области запрещенных зон [11,13,14], которые фактически исчезают (превращаются в зоны распространения с большим затуханием).

Таким образом, 2D и 1D МФК могут выполнять роль электромагнитных экранов, причем наноразмерные структуры очень эффективны как тепловые экраны в инфракрасном диапазоне. На рис. 8 представлены результаты расчета такого экрана.

Гомогенизация на основе дисперсионных соотношений

Дисперсионные кривые (в общем случае поверхности) позволяют также ввести эффективные ДП. Так, выбирая волну с $k_y = k_z = 0$, имеем $k_x = k_0 \sqrt{\varepsilon \varepsilon_{xx}}$. При этом в зонах bandgap k_x — величина мнимая, а ε_{xx} отрицательная. В общем случая строим диагональный тензор эффективной ДП, зависящий от ветки (поверхности). При наличии диссипации он комплексный, соответствующие комплексные решения ДУ образуют гиперповерхности в четырехмерном пространстве (k_0 , **k**) без частотных зазоров. В работе [13] приведена зависимость компоненты ε_{zz} для штыревого (проволочного) ФК, которая имеет отрицательные значения в области bandgap. К отрицательным значениям в зонах непропускания

97

приводит и ФК в виде кубических диэлектрических и идеально проводящих металлических включений. Для диссипативных включений имеют место отрицательная реальная и мнимая части (зависимость от времени $\exp(i\omega t)$). Первая соответствует затуханию, а вторая фазовой постоянной комплексного коэффициента распространения. На основе рассчитанной дисперсии для кубических металлических ФК (рис. 3) получена частотная зависимость эффективной ДП $\varepsilon_e(k_0, \mathbf{k})$ от частоты. $\varepsilon_{e}(k_{0}, \mathbf{k})$ изменяется от единицы на низких частотах до значения 1.17 в точке начала bandgap (равенства групповой скорости нулю). Далее она становится отрицательной с минимальным значением -0.5, а затем возрастает, но не превышает единицы. Поскольку ДП является и функцией k, то значения получены для $k_x = k_z$ и при движении по основной дисперсионной ветви с переходом через зону bandgap на следующую прямую дисперсионную ветвь с быстрой волной. Минимум ДП оценен путем нахождения мнимого значения k_x в центре зоны непропускания. Рассмотренный МФК имеет диагональный тензор с компонентами $\varepsilon_e(k_0, \mathbf{k})$, т.е. является изотропным. Однако это справедливо при $\lambda \gg a$. В резонансной области свойства волны зависят от направления, при этом $\varepsilon_e(k_0, \mathbf{k})$ может зависеть только от k^2 .

Заключение

Методом интегральных уравнений, сформулированных на основе ФГ периодически расположенных источников, получены электрофизические параметры простейших металлических и диэлектрических фотонных кристаллов с включениями в виде параллелепипедов, кубов и сфер в кубическую решетку. Исследованы также одномерные металлодиэлектрические ФК, которые эффективны как электромагнитные экраны. Исследование проведено на основе простых аппроксимаций, но с учетом зависимости ДП металла от частоты и потерь. Рассмотрена гомогенизация и получены простые аналитические выражения для эффективных ДП. Здесь следует отметить, что МФК обладают и магнитными свойствами, а более строго — бианизотропией. Это требует для описания поляризации введения четырех тензоров, т.е. дополнительно двух тензоров кроссполяризаций. Как правило, в левых средах с сильным проявлением подобных свойств рассматривают только $\hat{\varepsilon}$ и $\hat{\mu}$, и то часто считают их скалярами. Имеется ряд работ, например [21], в которых рассматривается вклад дипольных моментов от резонансов электрических и магнитных мод сферических диэлектрических резонаторов в ФК с двойной кубической решеткой в приближении отсутствия связи. Можно показать, что бианизотропия возможна и в диэлектрических ФК. Рассмотрение подобных свойств выходит за рамки данной работы, а в анализируемых ФК они проявляются слабо.

Список литературы

- Feddi M.E., Ren Z., Razek A. // IEEE Trans. 1997. Vol. MTT-33. N 2. P. 1382–1385.
- [2] Ouchetto O., Qiu C.W., Zouhdi S., Li L.W., Razek A. // IEEE Trans. 1997. Vol. MTT-33. N 2. P. 1382–1385.
- [3] Smith D.R., Pendry J.B. // J. Opt. Soc. Am. B. 2006. Vol. 23.
 N 3. P. 391–403.
- [4] Simovski C.R., Kolmakov I., Tretyakov S.A. // 11th Int. Conf. on Mathematical Methods in Electromagnetic Theory. Kharkiv, Ukraine, 2006. P. 41–44.
- [5] Davidovich M.V., Stephuk J.V. // Modeling in Applied Electromagnetics and Electronics. Saratov University Press, 2007. N 8. P. 67–75.
- [6] Davidovich M.V., Stephuk J.V. // Mathematical Methods in Electromagnetic Theory. Proc. 12th International Conference (MMET'2008). Odessa, Ukraine, 2008. P. 527–529.
- [7] Давидович М.В. // Проблемы оптической физики. Материалы 11-й Междунар. молодежной научн. школы по оптике, лазерной физике и биофизике 25–28 сентября 2007. Саратов: Новый ветер, 2008. С. 99–106.
- [8] Давидович М.В., Савин А.Н., Стефюк Ю.В. // Излучение и рассеяние электромагнитных волн ИРЭМВ-2009. Тр. конф. Таганрог: ТРТУ. 2009. С. 370–375.
- [9] Lewin L. // Proc. Inst. Electr. Eng. 1947. Part 3. Vol. 94. N 27. P. 65–68.
- [10] *Левин Л.* Современная теория волноводов. М.: ИЛ. 1954. 216 с.
- [11] Давидович М.В. // Известия вузов. Радиофизика. 2006. Т. XLIX. № 2. С. 150–163.
- [12] Давидович М.В. Фотонные кристаллы: функции Грина, интегродифференциальные уравнения, результаты. Саратов: Изд-во Сарат. ун-та, 2005. 40 с.
- [13] Давидович М.В., Стефюк Ю.В., Шиловский П.А. // ЖТФ. 2012. Т. 82. Вып. 3. С. 7–14.
- [14] Давидович М.В., Шиловский П.А. // ЖТФ. 2012. Т. 82. Вып. 12. С. 79–83.
- [15] Давидович М.В. // Проблемы оптической физики. Материалы 10-й Международной школы по оптике, лазерной физике и биофизике. Саратов: Новый ветер, 2007. С. 140– 150.
- [16] Давидович М.В. // Труды 4-го Рабочего семинара IEEE Saratov-Penza Chapter. Сарат. гос. техн. ун-т, 2000. С. 61-68.
- [17] Raab R.E., de Lange O.L. Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications. Oxford University Press, 2005. 235 p.
- [18] Давидович М.В., Стефюк Ю.В. // ПНД. 2010. Т. 18. № 3. С. 160–177.
- [19] Давидович М.В., Стефюк Ю.В. // Известия вузов. Радиофизика. 2010. Т. LIII. № 1. С. 31-40.
- [20] Альтиулер Е.Ю., Давидович М.В., Стефюк Ю.В. // РЭ. 2010. Т. 55. № 1. С. 25–32.
- [21] Вендик И.Б., Вендик О.Г., Гашинова М.С. // Письма в ЖТФ. 2006. Т. 32. Вып. 10. С. 30–39.