04;05.1;12 Процессы массопереноса и легирования при электролитно-плазменной обработке чугуна

© А.Д. Погребняк, О.П. Кульментьева, А.П. Кобзев, Ю.Н. Тюрин, С.И. Головенко, А.Г. Бойко

Сумской институт модификации поверхности, Сумы, Украина E-mail: apogrebnjak@simp.sumy.ua Объединенный институт ядерных исследований, Дубна Институт электросварки НАН Украины, Киев E-mail: ytyurin@paton.kiev.ua Сумской государственный университет, Сумы, Украина

В окончательной редакции 22 ноября 2002 г.

Впервые с помощью резерфордовского обратного рассеяния (RBS), упругого резонанса на протонах (ERDA), рентгеноструктурного анализа (XRD), металлографии и измерения микротвердости были исследованы поверхностные и приповерхностные слои чугуна после электролитно-плазменной обработки (EPT $\equiv \Im$ GD). Обнаружено внедрение ионов W и Cu в поверхность чугуна. Толщина упрочненного слоя при данном виде обработки составила 3 mm, а максимальная твердость (до 7000 MPa) наблюдается на глубине упрочненного слоя от 1 до 2.5 mm. Рентгеноструктурный анализ упрочненного слоя показал наличие в нем смеси α - и γ -фаз, образование мелкозернистой структуры мартенсита с высокой плотностью дислокаций (свыше 10^{12} cm⁻²) и оксидной фазы (FeO), а также массоперенос легирующих элементов (W и Cu).

Электролитно-плазменная обработка (ЭПО) металлических материалов является одним из весьма эффективных методов поверхностного упрочнения, который активно внедряется в промышленности. Основными достоинствами этого вида обработки являются: высокий КПД, достигающий 85% [1,2], значительная глубина упрочненных слоев до 10 mm [2], возможность реализации на простом оборудовании без использования токсичных электролитов и соединений. Несмотря на практическое применение этого метода, протекающие при этом физические процессы (например, процессы массопереноса и легирования) еще недостаточно изучены. Необходимо подчеркнуть, что кроме упроч-

8

Рис. 1. Схема работы устройства для электролитно-плазменной обработки. *А* — анод, *С* — катод, *E* — электролит.

нения, электролитно-плазменную обработку можно использовать для очистки поверхности и для микрооксидирования. Интерес к подобным процессам значительно возрос в последнее время [1–6].

Электролитно-плазменная обработка представляет собой один из способов скоростного нагрева, при котором обрабатываемая деталь является катодом или анодом относительно водного раствора электролита. Электролитно-плазменная обработка производится путем периодического нагрева и охлаждения поверхности изделия за счет изменения электрического потенциала в слое плазмы, создаваемом между жидким электродом (электролитом) и поверхностью катода (изделия). В электролите размещается перфорированная металлическая сетка (анод) диаметром D_a (рис. 1). Через отверстия в сетке к поверхности обрабатываемого изделия подается поток электролита, имеющий протяженность Н. В непосредственной близости от поверхности изделия образуется тонкий плазменный слой толщиной h, имеющий повышенное омическое сопротивление. Подводимая электрическая энергия преобразуется во множество микродуг, которые образуются в плазменном слое [7]. Электропроводность электролита в нагревателе между сетчатым анодом и плазменным слоем содер-

жит электростатическую и гидродинамическую составляющую [8], что снижает резистивные потери Q_R . Энергия в основном преобразуется в тепло, и в плазменном слое идет нагрев катода Q_k . Рассеивание энергии Q_d мало, что обусловлено малостью толщины слоя h по сравнению с активной площадью нагрева, ограниченной диаметром D_k выходного сопла нагревателя. В зависимости от соотношений D_a/D_k , h/H и электрических режимов технология обеспечивает управление скоростью нагрева и охлаждения поверхности изделия в диапазоне $20 \div 500^{\circ}$ С/s. Приведенные характеристики режима работы позволяли нагревать поверхность образцов с максимальной удельной мощностью, равной по расчету $10^3 \div 10^4$ W/cm².

В экспериментах использовались два анода (из меди и вольфрама). Электролит представлял собой двенадцатипроцентный водный раствор кальцинированной соды (Na₂CO₃). В качестве нагреваемых объектовобразцов использовались чугунные гильзы для дизельных двигателей. Обработку проводили по внутренней поверхности гильзы. Предварительно применяли электролит с медным анодом, и изделие прогревали в течение 10 h. При этом происходило растворение материала анода в электролите, масса анода уменьшилась на 15.6 g. Затем материал анода был заменен на вольфрам, и процесс нагрева и охлаждения проводили по следующей схеме. Нагрев начинали с включения электропотенциала 320 V на время 3 s. По достижению перегрева электропотенциал переключали на 200 V на 5 s. При этом плотность мощности нагрева изменялась от $1.6 \cdot 10^4$ до $0.6 \cdot 10^4$ W/cm². После 30 s нагрева, пяти циклов переключения, электрический потенциал переключали и осуществляли охлаждение нагретого слоя образца потоком электролита. Прошедшие электролитно-плазменную обработку чугунные детали затем разрезались на отдельные образцы, на которых производились исследования.

С помощью методов RBS и ERDA была получена информация об элементном составе поверхностного слоя. Так, на рис. 2, 3 приведены энергетические спектры обратного рассеяния ионов гелия (RBS) и упругого резонанса на протонах (ERDA), измеренные для образца из чугуна после электролитно-плазменной обработки со сменным катодом. Как видно на спектре (рис. 2), наряду с пиком W имеется также пик Сu, присутствуют кислород и углерод (рис. 3). Стрелками показаны кинематические границы элементов. Было определено распределение элементов по глубине. Обработка спектров показала, что в поверхностном слое чугуна имеется незначительная концентрация W (около

Рис. 2. Энергетический спектр обратного рассеяния (RBS) ионов гелия для чугуна, обработанного электролитной плазмой со сменным катодом.

Рис. 3. Энергетический спектр упругого резонанса (ERDA) на протонах для того же образца (см. рис. 2).

0.3 at.%), а концентрация Си достигает 6 at.%. В то же время в приповерхностном слое наблюдается высокая концентрация кислорода (около 68 at.%), тогда как концентрация углерода составляет всего лишь 4.7 at.%. Следует отметить, что окисный слой расположен только вблизи поверхности толщиной до $2.5\,\mu$ m. Концентрация же углерода с глубиной изменяется незначительно, например, вблизи поверхности она равна 4.7 at.%, а на глубине $12\,\mu$ m — составляет 4.1 at.%.

Металлографическое исследование показало, что после обработки поверхностный (упрочненный) слой представляет собой ферритноперлитную смесь с большим содержанием цементита. Причем в структуре четко прослеживаются три зоны: зона интенсивных структурнофазовых превращений, зона термического влияния и зона, имеющая структуру подложки. В зоне интенсивных структурно-фазовых превращений наблюдаются мелкозернистая мартенситная структура и отбеливание чугуна с появлением пластинчатого графита, что можно объяснить насыщением чугуна углеродом, который выделяется при повышении температуры вследствие разложения электролита из Na₂CO₃.

Особое влияние на характер структурных превращений оказывает периодическое повышение температуры при подключении повышенного потенциала, которая возрастает выше точки фазового $\alpha \rightarrow \gamma$ -превращения (порядка 800°С [9]). Затем при последующем быстром снижении температуры чугуна происходит быстрое охлаждение поверхности чугуна, и в этой области фиксируются две фазы α -и γ - на основе Fe.

В переходной зоне представлены два типа структур, а именно: мелкозернистая структура, характерная для зоны термического влияния, и крупнозернистая структура основы.

Как показали рентгеноструктурные исследования, результаты которого приведены в таблице, чугун до обработки представлял собой практически 100%-ную α -фазу (феррит с параметром решетки $a_{cp} = 2.866$ Å, что совпадает с параметром решетки α -Fe, для которого $a_0 = 2.864$ Å [10]). После электролитно-плазменной обработки в чугуне появились новые фазы: γ -фаза на основе Fe, Cu и FeO. Из таблицы видно, что в процессе ЭПО в приповерхностном слое имеет место фазовое превращение α - в γ -фазу. Зафиксированное появление значительного количества (до 15%) оксида железа (FeO) может быть обусловлено усилением окислительных процессов при разогреве электролита в плазменном слое.

Вид обработки	Фазовый состав	$\langle a \rangle$, nm	<i>f</i> , %	Lev, Å	$ ho$, $10^{11} \mathrm{cm}^{-2}$
До обработки	α-Fe	0.2867	100	261.2	5.538
После электролитно- плазменной обработки	α-Fe γ-Fe Cu FeO	0.2857 0.3588 0.3627 0.4295	29 11 46 14	128.7 342 169.4 291.2	19.65

Результаты анализа рентгенограмм до и после ЭПО

На рис. 4 приведен график изменения микротвердости приповерхностного (упрочненного) слоя по глубине. Как видно из рисунка, микротвердость возросла в три раза вблизи поверхности. Максимальная микротвердость (7000 MPa) наблюдается на глубине от 1.2 до 2.5 mm. Общая толщина упрочненного слоя составляет около 3 mm. Следует отметить, что на полученной зависимости имеются минимумы и максимумы, которые, по-видимому, могут быть связаны с образованием локальных областей мелкоразмерного мартенсита и более крупных зерен материала основы. Тем, что электролитно-плазменная обработка поверхности осуществлялась при периодическом повышении и понижении плотности мощности нагрева, по-видимому, и объясняется соответствующая периодичность в изменении микротвердости по глубине упрочненного слоя.

XRD-исследование показало, что после ЭПО наблюдается уменьшение размеров кристаллитов и резкое повышение плотности дислокаций (свыше 10^{12} cm⁻²) после обработки, что также приводит к увеличению прочности материала и к повышению твердости поверхностного (упрочненного) слоя.

Особое внимание необходимо обратить на активирование плазменным потоком направленного массопереноса легирующих элементов как из анода, так и из электролита, который регистрируется методами XRD и RBS. Под массопереносом мы понимаем процесс направленного перемещения вещества во внешнем или внутреннем по отношению к твердому телу поле [11]. В данном случае имеет место направленный в глубь образца по линиям электрического тока массоперенос как тяжелых элементов (Си и W), так и более легких элементов

Рис. 4. Зависимость микротвердости, измеренная по глубине (поперечный шлиф), для чугуна: *1* — перлит (исходный образец); *2* — феррит (исходный образец); *3* — после ЭПО.

(С и О). Влияние на диффузию элементов источника нагрева и наличие водорода в приграничном слое в настоящей работе не изучались, но были проанализированы в [12]. Поверхностный массоперенос в нашем случае предполагается как режим испарение–конденсация и в режиме диффузии в пароплазменном слое вблизи поверхности чугуна при ЭПО. Оценки коэффициента диффузии отдельных элементов в образцах, полученные с помощью ERDA, показывают, что его значения равны соответственно для меди $8 \cdot 10^{-6}$ и для вольфрама $\approx 10^{-8}$ cm²/s.

Таким образом, в настоящей работе показано, что электролитноплазменная обработка чугуна позволяет упрочнять поверхностный слой до 3 mm. Это слой состоит из трех областей с различной структурой. Приповерхностный слой имеет мелкозернистую мартенситную структуру и, как следствие, обладает высокой микротвердостью. Последняя возросла почти в три раза по сравнению с материалом основы. Одновременно с послойным упрочнением поверхностный слой чугуна можно легировать как элементами, составляющими материал анода, так и элементами, которые содержатся или введены в электролит.

Авторы выражают признательность Dr. R. Gunzel (Dresden, Germany) и prof. W. Zhao (Beijig, China) за проявленный интерес и поддержку данной работы.

Работа частично финансировалась в рамках проектов № 1472 УНТЦ и № 2М-145/2001 Министерства образования и науки Украины.

Список литературы

- Yerokhin A.I., Nie X., Leyland A., Matthews A., Dowey S.J. // Surf. and Coat. Tech. 1999. V. 122. P. 73–93.
- [2] *Tyurin Yu.N, Pogrebnjak A.D.* // Surf. and Coat. Tech. 2001. V. 142–144. P. 293–299.
- [3] *Тюрин Ю.Н., Погребняк А.Д. //* Труды ОТТОМ 2000. Харьков: ННЦ ХФТИ, 2000. С. 87–95.
- [4] Тюрин Ю.Н., Погребняк А.Д. // ЖТФ. 2002. Т. 27. В. 8.
- [5] Яснегородский Я.З. Автоматический нагрев в электролите. М.: Оборонгиз, 1947. 24 с.
- [6] Остроумов Г.А. Взаимодействие электрических и гидродинамических полей. М.: Наука, 1979. 310 с.
- [7] Райзер Ю.П. Физика газового разряда. М.: Ред. физ.-мат. литер., 1992. 535 с.
- [8] Еретнев К.Н., Лебедев С.В. Процессы нагрева и очистки поверхности металлов в электролите и их практическое использование. Липецк, 1997. 150 с.
- [9] Федюкин В.К. Термоциклическая обработка сталей и чугунов. Л., 1997. 144 с.
- [10] Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электроннооптический анализ. Приложения. М.: Металлургия, 1970. 109 с.
- [11] *Физика* твердого тела: Энциклопедический словарь // Гл. редактор В.Г. Барьяхтар. Киев: Наук. думка, 1996. Т. 1. С. 531.
- [12] Барьяхтар В.Г., Буравлев Ю.М., Шевченко В.П. и др. // Труды ОТТОМ 2000. Харьков: ННЦ ХФТИ, 2000. С. 155–161.