03 Формирование импульсных сверхзвуковых недорасширенных струй в условиях влияния фонового газа

© Н.Г. Коробейщиков, А.Е. Зарвин, В.Ж. Мадирбаев

Новосибирский государственный университет E-mail: korobei@ci.nsu.ru,zae@phys.nsu.ru

Поступило в Редакцию 22 сентября 2003 г.

Исследована газодинамика импульсного струйного истечения He, Ar и N₂ с умеренными степенями нерасчетности $n \sim 10^3 \div 10^6$ при числах Рейнольдса Re_L ~ 1 ÷ 10². Определены закономерности движения переднего фронта в импульсных струях разных газов. Установлено, что передний фронт струи движется со скоростями, существенно меньшими предельных скоростей стационарного истечения для соответствующего газа. Исследована структура импульсного потока в зависимости от параметров подобия. Показано, что размер квазистационарного участка уменьшается при движении газа от источника и определяется степенью нерасчетности течения.

В настоящее время газодинамика нестационарных свободных струй детально исследована либо при больших степенях нерасчетности $(n \sim 10^8)$, когда истечение газа происходит в пространство с очень малым давлением фона $(P_b \sim 10^{-3} \text{ Pa})$ [1,2], либо при малых степенях нерасчетности $(n \sim 10^2)$ при истечении в затопленное пространство с большим давлением фона ($P_b \sim 10 \, {\rm Pa}$) [3,4]. В первом случае структура течения хорошо описывается моделями свободного истечения в вакуум: передний фронт истекающего газа движется с предельной скоростью нестационарного истечения, граница области квазистационарного течения — с предельной скоростью стационарного истечения [5]. Во втором — на переднем фронте образуется характерная ударно-волновая структура из сжатых слоев истекающего газа и фонового газа, вытесняемого из области течения. В то же время наиболее интересная с точки зрения применений импульсных газовых струй и молекулярных пучков область промежуточных значений нерасчетности осталась практически не изученной.

21

В данной работе исследована динамика истечения различных газов (гелий, азот, аргон) в виде длинных импульсов (длительность на выходе из звукового сопла ~ 1 ms, скважность — не менее 100) в пространство с пониженным конечным давлением фона. Измерения выполнялись на газодинамическом стенде "ЛЭМПУС" НГУ методами молекулярно-пучковой масс-спектрометрии [6] и электронно-пучковой спектроскопии [7]. Изучены сильно недорасширенные ($n \sim 10^3 \div 10^6$) импульсные потоки в условиях заметного влияния фонового газа ($P_b \sim 10^{-2} \div 10^0$ Pa, $\text{Re}_L \sim 1 \div 10^2$). Регистрировались движение переднего фронта истекающего газа и длительность области квазистационарного течения при изменении определяющих газодинамических параметров: давления торможения P_0 ($10^0 \div 10^3$ kPa), диаметра звукового сопла d (0.5 и 1 mm), расстояния от источника x/d ($10 \div 225$).

В отличие от истечения в вакуум, в условиях настоящей работы первичная волна разрежения отсутствует, по крайней мере, в исследуемом диапазоне расстояний от источника. Поэтому положение фронта истекающего газа определяет переднюю границу квазистационарной области. С другой стороны, в отличие от сплошной среды, тормозящее влияние фонового газа на стекающей из источника газ не приводит к образованию на переднем фронте течения сильных гидродинамических скачков (ударных волн). При этом скорости движения переднего фронта истекающих газов V_{imp} намного меньше предельных скоростей стационарного, тем более нестационарного потока для соответствующих газов $(V_{imp} = 1230 \text{ m/s}$ для гелия, 370 m/s для аргона и 400 m/s для азота при давлении фонового газа в камере расширения $P_b \sim 0.1$ Pa).

Для сравнения экспериментальных данных по временам движения переднего фронта при разных режимах истечения были использованы безразмерные параметры подобия: время $\tau = \left(\frac{\rho_b}{\rho_a}\right)^{1/2} \frac{r}{r_a}$ и расстояние $\xi = \left(\frac{\rho_b}{\rho_a}\right)^{1/2} \frac{r}{r_a}$, предложенные в [5], где индекс *a* характеризует параметры газа на выходе из источника. На рис. 1 приведены результаты, полученные нами в импульсных струях Не, Ar, N₂ в укзанных координатах. Видно, что для каждого газа имеет место своя обобщающая зависимость для данных, полученных не только при разных давлениях торможения и давлениях фона, но и для сопел разного диаметра.

На рисунке сплошными линиями нанесены также результаты модельных расчетов [5]. Сравнение с экспериментом показывает, что модель дает завышенные оценки скоростей движения переднего фронта, особенно при малых значениях τ и ξ , что, согласно [5], объясняется

Рис. 1. Движение переднего фронта истекающего газа в безразмерных параметрах подобия: $I - N_2$, теория [5]; 2 - Ar, теория [5]; 3 -эксперимент [1]; 4 -эксперимент [3]; 5 -свободная струя, He, $P_0d = 100 \text{ kPa} \cdot \text{mm}; 6 -$ свободная струя, He, $P_0d = 800 \text{ kPa} \cdot \text{mm}; 7 -$ свободная струя, Ar, $P_0d = 11 \text{ kPa} \cdot \text{mm}; 8 -$ свободная струя, Ar, $P_0d = 220 \text{ kPa} \cdot \text{mm}; 9 -$ свободная струя, N₂, $P_0d = 100 \text{ kPa} \cdot \text{mm}; 10 -$ свободная струя, N₂, $P_0d = 220 \text{ kPa} \cdot \text{mm}; 11 -$ свободная струя, N₂, $P_0d = 440 \text{ kPa} \cdot \text{mm}; 12 -$ молекулярный пучок, He, $P_0d = 10 \text{ kPa} \cdot \text{mm}; 13 -$ молекулярный пучок, He, $P_0d = 55 \text{ kPa} \cdot \text{mm}; 14 -$ молекулярный пучок, He, $P_0d = 800 \text{ kPa} \cdot \text{mm}; 15 -$ молекулярный пучок, Ar, $P_0 = 6 \text{ kPA} \cdot \text{mm}; 16 -$ молекулярный пучок, Ar, $P_0d = 40 \text{ kPa} \cdot \text{mm}; 17 -$ молекулярный пучок, Ar, $P_0d = 55 \text{ kPa} \cdot \text{mm}; 17 -$ молекулярный пучок, Ar, $P_0d = 55 \text{ kPa} \cdot \text{mm}; 17 -$ молекулярный пучок, Ar, $P_0d = 100 \text{ kPa} \cdot \text{mm}; 16 -$ молекулярный пучок, Ar, $P_0d = 40 \text{ kPa} \cdot \text{mm}; 17 -$ молекулярный пучок, Ar, $P_0d = 55 \text{ kPa} \cdot \text{mm}; 17 -$ молекулярный пучок, Ar, $P_0d = 100 \text{ kPa} \cdot \text{mm}; 18 -$ молекулярный пучок, N₂, $P_0d = 40 \text{ kPa} \cdot \text{mm}.$

использованием модели невязкого газа. Там же штрихпунктирными линиями приведены экспериментальные данные, полученные при нестационарном истечении в других условиях: в [1] при истечении аргона в вакуум и в [3] — при запуске ударно-нагретой струи азота. Эти данные хорошо соотносятся с нашими результатами.

Согласно модели [5], при импульсном истечении в вакуум время существования стационарного течения при движении газа вниз по

Рис. 2. Длительность области стационарного течения на различных расстояниях от источника: I - He, $P_0 = 28 \text{ kPa} \cdot \text{mm}$; 2 - He, $P_0 = 100 \text{ kPa} \cdot \text{mm}$; 3 - He, $P_0 = 225 \text{ kPa} \cdot \text{mm}$; 4 - He, $P_0 = 460 \text{ kPa} \cdot \text{mm}$; $5 - \text{N}_2$, $P_0 = 5 \text{ kPa} \cdot \text{mm}$; $6 - \text{N}_2$, $P_0 = 50 \text{ kPa} \cdot \text{mm}$; $7 - \text{N}_2$, $P_0 = 70 \text{ kPa} \cdot \text{mm}$; $8 - \text{N}_2$, $P_0 = 100 \text{ kPa} \cdot \text{mm}$; 9 - Ar, $P_0 = 5 \text{ kPa} \cdot \text{mm}$; 10 - Ar, $P_0 = 17 \text{ kPa} \cdot \text{mm}$; 11 - Ar, $P_0 = 28 \text{ kPa} \cdot \text{mm}$.

потоку от источника уменьшается в результате ухода части истекающих частиц в переднюю и заднюю (замыкающую) волны разрежения. На фиксированном расстоянии от источника при одинаковой начальной длительности импульса время существования стационарного течения зависит от показателя адиабаты истекающего газа γ : с уменьшением γ длительность стационарной области увеличивается. В то же время в настоящей работе при истечении в пространство с низким давлением P_b в одинаковых условиях (фиксированном расстоянии от сопла, одинаковых начальной длительности импульса, давлениях P_0 и P_p) длительность стационарной области течения стоящих истояния от сопла, одинаковых начальной длительности импульса, давлениях P_0 и P_p) длительность стационарной области течения одинакова для всех исследованных газов, т. е. не зависит от показателя адиабаты истекающего газа.

Полуширины газовых импульсов в гелии, азоте и аргоне для нескольких фиксированных давлений торможения и одинаковой начальной длительности, измеренные на разных расстояниях от источника, представлены на рис. 2. Видно, что для всех газов полуширина газового импульса (следовательно, и длительность стационарной области)

при движении газа от источника уменьшается тем значительнее, чем выше величина фонового давления. В то же время на фиксированном расстоянии от источника с увеличением давления P_0 длительность стационарной области увеличивается.

В исследуемых режимах истечения массы вытекающего из источника газа и вытесняемого из области течения фонового газа сопоставимы. Тормозящее влияние фонового газа приводит к тому, что истекающий газ тормозится на медленно движущемся переднем фронте и убывает в замыкающую волну разрежения. Соответственно при продвижении газа от источника размеры области стационарного течения уменьшаются. С ростом давления торможения или диаметра сопла увеличивается удельный (за единицу времени) расход газа через сопло. Это приводит к тому, что истекающий газ более интенсивно вытесняет фоновый из области течения. Таким образом, в отличие от истечения в вакуум, продолжительность стационарной области определяется не только длительностью начального импульса, но и соотношением давлений торможения и давления фона в области течения, т.е. P_0/P_b .

Работа поддержана Федеральной целевой программой "Интеграция науки и высшей школы России на 2002–2006 годы " (Государственный контракт № ЛО 126/805) и Программой Министерства науки и технической политики РФ по поддержке уникальных научно-исследовательских и экспериментальных установок национальной значимости (код проекта 06–05).

Список литературы

- [1] Еремин А.В., Кочнев В.А., Куликовский А.А. и др. // ЖПМТФ. 1978. № 1. С. 34–40.
- [2] Кочнев В.А., Набоко И.М. // ЖПМТФ. 1980. № 1. С. 107–113.
- [3] Naboko I.M., Golub V.V., Eremin A.V. et al. // Arch. Mech. 1977. V. 29. N 1. P. 69–80.
- [4] Добрынин Б.М., Масленников В.Г., Сахаров В.А. // ЖТФ. 1987. Т. 57. В. 1. С. 118–124.
- [5] Чекмарев С.Ф. Импульсные течения газа в сверхзвуковых соплах и струях. Новосибирск: Изд-во ИТ СО АН, 1990. 342 с.
- [6] Зарвин А.Е., Коробейщиков Н.Г., Мадирбаев В.Ж. н др. // ПТЭ. 2000. № 5. С. 64–70.
- [7] Гартвич Г.Г., Зарвин А.Е., Каляда В.В. и др. // ЖПМТФ. 1993. Т. 34. № 5. С. 150–156.