05 Емкость, сосредоточенная на межфазных границах в эпитаксиальной гетероструктуре La_{0.67}Ca_{0.33}MnO₃/SrTiO₃/La_{0.67}Ca_{0.33}MnO

© Ю.А. Бойков, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: yu.boikov@mail.ioffe.ru

Поступило в Редакцию 13 октября 2003 г.

Метод лазерного испарения был использован для выращивания трехслойных эпитаксиальных гетероструктур La_{0.67}Ca_{0.33}MnO₃/SrTiO₃/La_{0.67}Ca_{0.33}MnO₃ на поверхности (001) [(LaAlO₃)_{0.3} + (Sr₂AlTaO₆)_{0.7}]. Реальная часть диэлектрической проницаемости ε и тангенс угла диэлектрических потерь для промежуточного слоя SrTiO₃ толщиной 1100 nm были исследованы в интервале температур T = 4.2-300 K, при подаче напряжения смещения ± 2.5 V на манганитные электроды и без него. Используя измеренные зависимости $\varepsilon(T)$ для слоя SrTiO₃, выращенного между манганитными электродами, оценена емкость межфазных границ La_{0.67}Ca_{0.33}MnO₃/SrTiO₃ ($C_1 \approx 2 \mu$ F/cm²), возникающая вследствие проникновения электрического поля в La_{0.67}Ca_{0.33}MnO₃.

Перовскито-подобные сегнетоэлектрики (Ba,Sr)TiO₃ перспективны для использования в перенастраиваемых элементах CBЧ-техники [1]. Для применения в реальных устройствах сегнетоэлектрик с нелинейной зависимостью поляризации от электрического поля должен являться составной частью пленочной гетероструктуры, включающей проводящие (металлические или сверхпроводящие) электроды. Диэлектрический отклик сегнетоэлектрической пленки на изменение температуры и электрического поля резко зависит от ее структуры и свойств межфазных границ сегнетоэлектрик/электрод. Реальная часть диэлектрической проницаемости ε пленок (Ba,Sr)TiO₃ реагирует на электрическое поле, как правило, существенно слабее, чем ε соответствующих объемных кристаллов.

Использование тонких эпитаксиальных пленок проводящих оксидов (SrRuO₃, YBa₂Cu₃O_{7- δ} [2]) в качестве электродов позволяет форми-

26

ровать многослойные гетероструктуры, включающие четко преимущественно ориентированный (азимутально и относительно нормали к плоскости подложки) сегнетоэлектрический слой, реальная часть диэлектрической проницаемости которого следует соотношению Кюри– Вейсса.

В данном письме мы представляем результаты по температурной и полевой зависимости ε для слоя SrTiO₃ STO, выращенного между двумя манганитными La_{0.67}Ca_{0.33}MnO₃LCMO пленочными электродами.

(120 nm) LCMO/(1100 nm) STO/ Трехслойные гетероструктуры (120 nm)LCMO выращивались методом лазерного испарения (KrF, $\lambda = 248$ nm, $\tau = 30$ ns). В качестве подложек использовались полированные пластины $(001)[(LaAlO_3)_{0,3} + (Sr_2AlTaO_6)_{0,7}]$ LSATO. Технологические параметры процессов получения манганитных и сегнетоэлектрических пленок приведены в [2,3]. Для формирования квадратных электродов ($S = 200 \times 200 \,\mu m$) в верхнем манганитном LCMO/STO/LCMO гетероструктуре использовались слое в фотолитография и ионное травление (Ar, 500 V, 0.2 mA). Емкость С плоскопараллельных пленочных конденсаторных структур измерялась помощью прибора hp 4263A LCR meter (f = 100 kHz) при с подаче на электроды напряжения смещения ±2.5 V и без него. Диэлектрическая проницаемость є слоя STO рассчитывалась с использованием соотношения $C = \varepsilon S/d$. Сопротивление R манганитных электродов измерялось тем же LCR meter в геометрии Van der Раим, удельное сопротивление ρ рассчитывалось с использованием соотношения $\rho = R\pi d_1/\ln 2$ [4], где d_1 — толщина проводящего электрода.

Проведенное рентгеновское исследование показало, что промежуточный слой STO, так же как и манганитные электроды в выращенных трехслойных плоскопараллельных гетероструктурах LCMO/STO/LCMO, четко ориентирован как в плоскости подложки, так и азимутально. Из полученных рентгеновских $\omega/2\theta$ - и ϕ -сканов следует, что плоскость (001) и направление [010] в выращенных слоях LCMO и STO были параллельны плоскости (001) и направлению [010] в подложке. Дифрактограмма, полученная, когда падающий и отраженный рентгеновские пучки находились в плоскости, нормальной к плоскости подложки, приведена на рис. 1. Параметр кристаллической решетки в слое STO в гетероструктуре LCMO/STO/LCMO, измеренный вдоль нормали к плоскости подложки $a_{\perp} = 3.908 \pm 0.003$ Å, практически

Рис. 1. Ренттеновская дифрактограмма (CuK_{*a*1}, $\omega/2\theta$) для гетероструктуры (001)LCMO||(001)STO||(001)LCMO, выращенной на подложке (001)LSATO. Дифрактограмма получена в условиях, когда падающий и отраженный рентгеновские пучки находились в плоскости, нормальной к (001)LSATO. На вставке приведена кривая качания для рентгеновского пика (002)STO от той же гетероструктуры.

совпадал с соответствующим параметром, измеренным в плоскости подложки $a_{\parallel} = 3.906 \pm 0.003$ Å. Эффективный объем элементарной ячейки $V_{eff} = a_{\perp} x a_{\parallel}^2 = 59.62$ Å³ в слое STO примерно соответствовал объему элементарной ячейки в стехиометрических монокристаллах титаната стронция (≈ 59.55 Å³ [5]). Полуширина (ширина, измеренная

Вследствие различий в параметрах кристаллических решеток LCMO, STO, LSATO как нижний, так и верхний электроды LCMO в гетероструктуре LCMO/STO/LCMO/(001)LSATO находились под действием растягивающих в плоскости подложки механических напряжений. Параметр кристаллической решетки (~ 0.3868 nm) в нижнем электроде LCMO, измеренный в плоскости подложки, был больше соответствующего параметра (~ 0.3837 nm), измеренного вдоль нормали к ее поверхности.

Температурная зависимость удельного сопротивления ρ для слоя LCMO, выращенного на (001)LSATO, показана на рис. 2, *b*. Как и в случае объемных стехиометрических образцов, резкий максимум на зависимости $\rho(T)$ для слоя LCMO/(001)LSATO наблюдался при температурах 255–260 К (рис. 2). Удельное сопротивление пленки LCMO не изменялось после формирования на его поверхности слоя (1100 nm)STO.

Температурная зависимость ε , измеренная при $V_b = 0$ для слоя STO в гетероструктуре LCMO/STO/LCMO, приведена на рис. 2, *а*. В интервале температур 80–200 К ε слоя STO следовала соотношению

$$\varepsilon^{-1} = \varepsilon_0^{-1} C_0^{-1} (T - T_{Weiss}) + \varepsilon_1^{-1}, \tag{1}$$

где $T_{Weiss} = 30 \text{ K}$ — температура Кюри-Вейсса для однодоменных монокристаллов титаната стронция [6], а $C_0 \approx 0.77 \cdot 10^5 \text{ K}$ примерно совпадает с постоянной Кюри для объемных образцов STO [7], $\varepsilon_1 = 1530\varepsilon_0$ — константа, ε_0 — диэлектрическая проницаемость вакуума.

Первое слагаемое в правой части соотношения (1) отражает вклад в измеряемую диэлектрическую проницаемость от объема сегнетоэлектрического слоя, а второе слагаемое связано с вкладом в ε от межфазных границ LCMO/STO. Появление второго слагаемого в (1) обусловлено емкостью $C_1/2$, сосредоточенной на межфазных границах [8] в гетероструктуре LCMO/STO/LCMO вследствие проникновения

Рис. 2. *а* — температурные зависимости $\varepsilon/\varepsilon_0$ (*1*, *2*) и $\varepsilon_0/\varepsilon$ (*3*) для промежуточного слоя STO в гетероструктуре LCMO/STO/LCMO: *I* — *V_b* = 0, *2* — *V_b* = 2.5 V, *4* — касательная к кривой $\varepsilon_0/\varepsilon$ (*T*) при *T* = 80–200 K, стрелкой показано значение $\varepsilon_0/\varepsilon_1$. *b* — температурные зависимости тангенса угла диэлектрических потерь tan δ (*I*, *2*) для слоя STO и электросопротивления ρ (*3*) для нижнего слоя LCMO в гетероструктуре LCMO/STO/LCMO: *I* — *V_b* = 0, *2* — *V_b* = 2.5 V. На вставке показана зависимость $\varepsilon/\varepsilon_0(V_b)$ для слоя STO в гетероструктуре LCMO/STO/LCMO (температура указана на рисунке).

электрического поля в манганитные электроды. Емкость, сосредоточенная на квадратном сантиметре межфазной границы LCMO/STO, равна $C_1 = 2\varepsilon_1/d \approx 2 \cdot 10^{-6}$ F/cm². Полученное значение емкости, сосредоточенной на межфазной границе LCMO/STO, незначительно отличается от емкости, сосредоточенной на межфазной границе между диэлектриком и благородным металлом [8]. Емкость C_1 , сосредоточенная на межфазной границе сегнетоэлектрик/электрод, зависит от глубины проникновения L_e электрического поля в электрод и от эффективной диэлектрической проницаемости материала последнего ε_e ($C_1 = \varepsilon_e/2.31L_e$ [8]). Глубина проникновения L_e зависит от концентрации носителей заряда в электроде и от его ε_e . При T < 200 K концентрация носителей заряда

Рис. 2 (продолжение).

(дырки, $p \approx 6 \cdot 10^{21} \text{ cm}^{-3}$) в LCMO примерно на порядок величины меньше, чем в благородных металлах (Au, Pt, ...), что способствует увеличению L_e в манганитных электродах по сравнению с электродами, выполненными из благородных металлов. Диэлектрическая проницаемость LCMO [9], однако, существенно выше, чем диэлектрическая проницаемость благородных металлов.

Влияние электрического поля (E = 25 kV/cm) на диэлектрическую проницаемость слоя STO четко проявлялось при температурах ниже 150 К. Наиболее резкое подавление ε электрическим полем наблюдалось при температурах ($\sim 25-30 \text{ K}$) в окрестности максимума на зависимости $\varepsilon(T)$ (рис. 2, *a*). Зависимость $\varepsilon(V_b)$, измеренная для слоя STO, была практически симметричной относительно точки $V_b = 0$ (см. вставку на рис. 2, *b*), что указывает на незначительные отличия в микроструктуре и электронных параметрах нижней и верхней межфазной границ сгнетоэлектрик/электрод в выращенной гетероструктуре LCMO/STO/LCMO. На зависимостях $\varepsilon(V_b)$ нами не было обнаружено каких-либо проявлений гистерезиса.

Температурные зависимости тангенса угла диэлектрических потерь tan δ , измеренные для плоскопараллельной емкостной структуры LCMO/STO/LCMO при $V_b = 0$ и $V_b = 2.5$ V (f = 100 kHz), показаны на рис. 2, b. При T < 100 K подача электрического напряжения на манганитные электроды приводила к понижению (при $T \sim 50$ K примерно на 50%) tan δ для гетероструктуры LCMO/STO/LCMO. Наблюдавшееся уменьшение tan δ в электрическом поле может быть отчасти связано с изменением доменной структуры в слое STO. В интервале температур 100–250 K электрическое поле не оказывало существенного влияния на диэлектрическое поле способствовало увеличению tan δ , что может быть связано с возрастанием эффективной проводимости сегнетоэлектрического слоя (эффект Пула–Френкеля [10]).

Финансовая поддержка для проведения данной работы была получена из проекта 9Б19 Президиума РАН.

Список литературы

- [1] Hong J.P., Lee J.S. // Appl. Phys. Lett. 1996. V. 68. P. 3034.
- [2] Boikov Yu.A., Claeson T. // Physica C. 2000. V. 336. P. 300.
- [3] Boikov Yu.A., Claeson T. // Physica B. 2002. V. 311. P. 250.
- [4] Kamins T.I. // J. Appl. Phys. 1971. V. 42. N 11. P. 4357.
- [5] Wyckoff R.W.G. // Crystal Structure. V. 2. 2nd edn. Interscience, New York, 1964. P. 394.
- [6] Nevile R.C., Hoeneisen B., Mead C.A. // J. Appl. Phys. 1972. V. 43. P. 2124.
- [7] Hilton A.D., Ricketts B.W. // J. Phys. D: Appl. Phys. 1996. V. 29. P. 1321.
- [8] Ku H.Y., Ullman F.G. // J. Appl. Phys. 1964. V. 35. P. 265.
- [9] Boris A.V., Kovaleva N.N., Bazhenov A.V., Samoilov A.V., Yeh N.-C., Vasquez R.P. // J. Appl. Phys. 1997. V. 81. P. 5756.
- [10] Yeargan J.R., Taylor H.L. // J. Appl. Phys. 1968. V. 39. P. 5600.