01;10

К теории магнитоизолированных вакуумных линий

© С.Я. Беломытцев, А.В. Кириков, В.В. Рыжов

Институт сильноточной электроники СО РАН, Томск E-mail: ryzhov@to.hcei.tsc.ru

Поступило в Редакцию 26 октября 2004 г.

Предполагается, что в режиме магнитной самоизоляции в вакуумных передающих линиях реализуется предельный ток, при котором электроны на фронте волны имеют на аноде траектории, касательные к поверхности анода. Это позволяет из закона сохранения энергии в системе получить уравнение для релятивистского фактора γ_m , соответствующего напряжению на внешней границе слоя электронов, и определить основные характеристики линии в режиме магнитной самоизоляции.

В сильноточной электронике уже несколько десятилетий стоит проблема определения параметров волны с магнитной самоизоляцией (ВМС) в однородной передающей линии (рис. 1). Катод в ВМС эмитирует электроны в режиме неограниченной эмиссионной способности, и в такой волне при катоде формируется токонесущий электронный слой. Напряжение в волне U и напряжение в слое электронов U_m или соответствующий ему релятивистский фактор $\gamma_m = 1 + e U_m/mc^2$ (e, m, c — электрический заряд электрона, масса электрона, скорость света в вакууме) определяют основные характеристики линии в режиме магнитной самоизоляции: полный ток I, ток по катоду I_c и ток утечки I_L .

В большинстве работ по теории магнитоизолированных вакуумных линий релятивистский фактор γ_m находится из условия минимума тока в линии, согласно которому при заданном напряжении на линии существует некоторый минимальный ток $I = I_{\min}(U)$, который обеспечивает магнитную самоизоляцию в линии [1]. В данной работе для определения γ_m рассматривается фронт волны, который, по-видимому, и является "регулятором" параметров ВМС. Это позволяет получить уравнение для γ_m из закона сохранения энергии в системе. Закон сохранения продольной компоненты импульса дает тождественный результат.

76

Рис. 1. Геометрия передающей вакуумной линии. А. — анод, С. — катод, Е. — электроны, r_1 , r_2 — радиусы катода и анода, r_m — внешний радиус электронного слоя.

Рассмотрим коаксиальную линию, в которой распространяется ВМС. Так как полярность электродов линии не имеет значения, пусть для определенности катодом будет внутренняя труба (рис. 1). Полученные результаты справедливы и для плоской линии.

Предположим, что фронт ВМС не изменяется во времени, а слой электронов за фронтом волны однороден, и для него можно использовать решения, полученные в работе [2] в гидродинамическом приближении. Рассмотрим фронт ВМС в инерциальной системе K', движущейся со скоростью фронта V_f относительно неподвижной лабораторной системы координат K. В этой системе фронт ВМС по предположению стационарен, электроды не имеют разности потенциалов, а следовательно, электроны, вылетающие из катода с тангенциальной скоростью попадут на анод. В предельном случае, соответствующем предельному току $I_{\rm lim}$ в ВМС (приближение предельного тока $I = I_{\rm lim}$), все электроны, приходящие на анод на фронте волны ВМС, имеют на аноде траектории, касательные к поверхности анода, т.е. в системе K' электроны на аноде имеют скорость, направленную противоположно скорости на катоде.

В этом приближении $(I = I_{\text{lim}})$ легко вычислить энергию электронов на аноде в лабораторной инерциальной системе *K*, а вместе с током на анод — мощность, выходящую на анод в ВМС. Мощность ВМС минус

мощность, выходящая на анод, равна погонной плотности энергии в ВМС, умноженной на скорость фронта волны самоизоляции V_f . Это соотношение связывает U с γ_m , из которого и находится $\gamma_m(U)$ в приближении предельного тока.

В гидродинамическом приближении напряженности электрического и магнитного полей в слое электронов определяются выражениями [2]: $E_r = H_c r_1 r^{-1} \operatorname{sh}(\alpha \ln r/r_1)$, $H_{\theta} = H_c r_1 r^{-1} \operatorname{ch}(\alpha \ln r/r_1)$, где H_c — напряженность магнитного поля на катоде; $\alpha = e H_c r_1 / mc^2$, r_1 — радиус катода (рис. 1). При этом средняя скорость электронов $V_b = c (\gamma_m - 1)^{1/2} / (\gamma_m + 1)^{1/2}$, и $\gamma_m = \operatorname{ch}(\alpha \ln r_m / r_1)$, где r_m — внешний радиус слоя электронов (рис. 1). Ток в электронном слое $I_b = I(\gamma_m - 1) / \gamma_m$, ток по катодной трубе $I_c = I / \gamma_m$ и полный ток в ВМС

$$I = I_b + I_c = \frac{H_c r_1 c}{2} \gamma_m$$

= $\frac{I_0 \gamma_m}{2 \ln(r_2/r_1)} \Big[\ln(\gamma_m + (\gamma_m^2 - 1)^{1/2}) + (\Gamma - \gamma_m)(\gamma_m^2 - 1)^{-1/2} \Big],$ (1)

где $I_0 = mc^3/e \approx 17$ kA, $\Gamma = 1 + eU/mc^2$.

Обычно связь между γ_m и Γ находится из условия минимума полного тока в ВМС [1]:

$$dI/d\gamma_m = 0,$$

из которого следует:

$$\ln(\gamma_{m\min} + (\gamma_{m\min}^2 - 1)^{1/2}) = (\Gamma - \gamma_{m\min})(\gamma_{m\min}^2 - 1)^{-3/2}.$$
 (2)

Найдем связь между γ_m и Γ из закона сохранения энергии. Поток энергии (мощность) через поперечное сечение в ВМС в однородной области равен

$$W = IU = I_0 H_c r_1 \gamma_m (\Gamma - 1)/2,$$
 (3)

а погонная (приходящаяся на единицу длины) плотность энергии в линии, которая включает плотность кинетической энергии электронов и плотность полевой энергии в слое электронов и в зазоре между слоем электронов и анодом

$$\varepsilon = \frac{I_0 H_c r_1}{4c} \Big[2\gamma_m (\gamma_m^2 - 1)^{1/2} + \frac{(2\gamma_m^2 - 1)(\Gamma - \gamma_m)}{(\gamma_m^2 - 1)^{1/2}} - 2(\gamma_m^2 - 1)^{1/2} + \ln(\gamma_m + (\gamma_m^2 - 1)^{1/2}) \Big].$$
(4)

Скорость ВМС

$$V_f = c(\gamma_m^2 - 1)^{1/2} (\Gamma - 1) (\Gamma \gamma_m - 1)^{-1}$$
(5)

больше средней скорости электронов V_b в слое, поэтому ток I_c частично расходуется на зарядку слоя электронов, а остаток I_L проходит на анод (ток утечки)

$$I_L = I_c - I_b (V_f / V_b - 1) = H_c r_1 c (\Gamma + \gamma_m^2 - \gamma_m - 1) / 2 (\Gamma \gamma_m - 1).$$
(6)

В приближении предельного тока по релятивистскому закону сложения скоростей электроны, проходящие на анод с током I_L , имеют скорость $V_1 = 2V_f/(1 + V_f^2/c^2)$ и соответствующий скорости релятивистский фактор

$$\gamma_1 = (1 - V_1^2/c^2)^{-1/2} = \frac{(\gamma_m^2 - 1)(\Gamma - 1)^2 + (\Gamma\gamma_m - 1)^2}{(\Gamma\gamma_m - 1)^2 - (\gamma_m^2 - 1)(\Gamma - 1)^2}.$$
 (7)

Следовательно, мощность, выносимая током I_L на анод,

$$W_1 = I_0 I_L(\gamma_1 - 1)/c = I_0 H_c r_1 (\Gamma + \gamma_m^2 - \gamma_m - 1)(\gamma_1 - 1)/2(\Gamma \gamma_m - 1).$$
(8)

Из закона сохранения энергии имеем

$$W - W_1 = \varepsilon V_f. \tag{9}$$

С учетом выражений (3)–(5) и (8) после упрощения получаем соотношение, связывающее γ_m и Γ в приближении предельного тока в ВМС ($I = I_{\text{lim}}$):

$$2\gamma_{m\,\text{lim}}(\Gamma-1) - 2(\gamma_{1}-1)(\Gamma+\gamma_{m\,\text{lim}}^{2}-\gamma_{m\,\text{lim}}-1)/(\Gamma\gamma_{m\,\text{lim}}-1)$$

$$= (\Gamma-1)\Big(2(\gamma_{m\,\text{lim}})^{2}(\Gamma-1) - \Gamma - \gamma_{m\,\text{lim}} + 2$$

$$+ (\gamma_{m\,\text{lim}}^{2}-1)^{1/2} \times \ln(\gamma_{m\,\text{lim}}+(\gamma_{m\,\text{lim}}^{2}-1)^{1/2})\Big)/(\Gamma\gamma_{m\,\text{lim}}-1), \quad (10)$$

где γ_1 определяется формулой (7).

На рис. 2 приведена зависимость $\gamma_{m \, \text{lim}}$ от напряжения в волне U, полученная из соотношения (10). Для сравнения здесь же приведена зависимость $\gamma_{m \, \text{min}}$ от U, рассчитанная по формуле (2), полученной

Рис. 2. Зависимость релятивистского фактора γ_m (тонкие линии), соответствующего потенциалу на границе электронного слоя, и отношения токов, рассчитанных в разных приближениях в ВМС (толстые линии), от напряжения в волне. *I*, I_c и I_b — полный ток, ток по катодной трубе и ток электронов в слое. Индекс lim соответствует значениям величин, рассчитанным в приближении предельного тока, индекс min — в приближении минимального тока.

в приближении минимального тока $(I = I_{\min})$ в ВМС. Из рисунка видно, что значения γ_m , а следовательно, и значение напряжения в слое электронов U_m в этих двух приближениях существенно различаются. Это приводит к значительному относительному увеличению тока в электронном слое и уменьшению тока по катоду. В то же время импеданс линии Z меняется не так значительно: расчеты в приближении предельного тока Z_{\lim} дают уменьшение импеданса на десятки процентов в области низких напряжений (при U = 0.5 MV на 10%) и на единицы процентов в области высоких напряжений (при U = 15 MV на 5%) по сравнению с данными расчетов Z_{\min} в приближении минимального тока.

На рис. 3 приведена зависимость скорости движения фронта ВМС $\beta_f = V_f/c$ от напряжения в волне, рассчитанная по формуле (5) для двух обсуждаемых приближений при вычислении γ_m . Наибольшее

Рис. 3. Зависимость скорости фронта волны магнитной изоляции от напряжения в ВМС. $\beta_{f \text{ lim}}$ и $\beta_{f \text{ min}}$ — расчет в приближениях предельного и минимального тока. $\beta_{f \text{ max}} = (\Gamma - 1/\Gamma + 1)^{1/2}$ — предельная скорость волны, соответствующая $\gamma_m = \Gamma$. \blacktriangle — эксперимент для U = 0.46 MV [3], эксперимент для U = 3.4 MV [4]. Ссылки на экспериментальные данные взяты из [5].

(до 20%) отличие в скоростях фронта наблюдается в области низких напряжений, где приближение предельного тока предсказывает более низкие скорости. Для сравнения на этом же рисунке приведена кривая зависимости предельной скорости фронта от напряжения, описываемая формулой (5) при $\gamma_m = \Gamma$: $\beta_{f \max} = (\Gamma - 1)^{1/2}/(\Gamma + 1)^{1/2}$. Здесь же приведены результаты двух экспериментов по измерению β_f для напряжений U = 0.46 MV [3] и U = 3.4 MV [4], взятые из работы [5]. Обе расчетные кривые хорошо согласуются с данными по измерению скорости для U = 3.4 MV, вблизи которой кривые $\gamma_{m \lim}(U)$ и $\gamma_{m \min}(U)$ пересекаются (рис. 2). Однако экспериментально полученное значение скорости для U = 0.46 MV согласуется с расчетами в приближении предельного тока.

Сравнение результатов, полученных в приближении предельного тока, с результатами, основанными на приближении минимального тока в ВМС, показало, что оба подхода дают для полного тока

линии близкие значения (рис. 2). Однако значения γ_m отличаются существенно, что может быть использовано для экспериментальной проверки предложенного в работе приближения.

Авторы благодарят А.А. Кима за плодотворное обсуждение результатов работы.

Работа выполнена при поддержке РФФИ, грант 05-02-17754.

Список литературы

- Рудаков Л.И., Бабыкин М.В., Гордеев А.В. и др. // Генерация и фокусировка сильноточных релятивистских электронных пучков. М.: Энергоатомиздат, 1990. С. 280.
- [2] Гордеев А.В. // ЖТФ. 1978. Т. 48. В. 4. С. 784–788.
- [3] Baranchikov E.I., Gordeev A.V., Koba Yu.V. et al. // 6th IAES Conf. Plas. Phys. Cont. Thermonuclear Reactions. Berchtesgaden, 1976.
- [4] Smith I.D., Champney P.d'A., Creedon J.M. // Proc. Jnter. Pulsed Power Conf. New York, 1976. P. IIC 8–11.
- [5] Poukey J.W., Bergeron K.D. // Appl. Phys. Lett. 1978. V. 32. N 1. P. 8-10.