03;05

Изменение парамагнитных свойств и скорости газообмена кислорода и водорода в медьсодержащем углеродном волокне из пека при восстановлении меди

© В.П. Бервено, Л.В. Брюховецкая, Т.М. Наймушина, Н.В. Трушкин

Кемеровский филиал Института химии твердого тела и механохимии СО РАН E-mail: carbnanof@kemnet.ru

Поступило в Редакцию 25 октября 2005 г.

Рассмотрено влияние изменения связи углеродной матрицы (УМ) с медью при восстановлении Cu^{2+} в Cu^0 на спектры ЭПР неспаренных электронов (НЭ) УМ и Сu, а также на скорость газообмена H_2 с O_2 в углеродном волокне (УВ). Установлено, что ионы Cu под влиянием УМ восстанавливаются H_2 до Cu^0 при меньшей температуре (150°С), чем в чистой соли. Восстановление $Cu^{2+} \rightarrow Cu^0$ на УМ вызывает изменения в спектрах ЭПР НЭ УВ (*g*-фактора, ширины линии, насыщаемости резонансных переходов). Связь H_2 с УВ + Cu^0 при этом упрочняется, и скорость вытеснения H_2 кислородом из пор снижается до скорости вытеснения O_2 водородом.

PACS: 81.05.Bx

Адсорбенты с нанесенной Сu известны как эффективные поглотители токсичных газов — NO_x, CO, HCl [1–6]. Сорбционные и электронообменные свойства сорбента с нанесенными частицами металла определяются энергией взаимодействия металла с матрицей и с адсорбированными молекулами газов в процессах сорбции, катализа. Обменные взаимодействия электронов нанесенных частиц металла и матрицы проявляются в спектрах электронного парамагнитного резонанса (ЭПР) изменениями *g*-факторов, констант сверхтонкого расщепления, интенсивности линий, ширины спектров (ΔH) неспаренных электронов (НЭ) ионов металлов [1], УМ [7].

49

В данной работе рассмотрено влияние изменения связи Cu с УМ при восстановлении меди $Cu^{2+} \rightarrow Cu^0$ из CuCl₂ · 2H₂O на активированном УВ на спектры ЭПР НЭ Cu и областей полисопряжения УМ, а также на скорость газообмена O₂ с водородом в волокне.

Эксперимент. Активированное УВ получали из изотропного каменноугольного пека. Активировали волокно в парах воды при 700°С. Медь (3.7%) наносили на УВ из водного раствора двухлористой меди. Восстанавливали медь Н2. Пропитку УВ раствором, сушку, восстановление Си проводили в ампуле для ЭПР-спектроскопии. Спектры ЭПР регистрировали на спектрометре RadioPAH SE-X. В качестве ЭПР-стандарта использовали ионы марганца Mn²⁺ в окиси магния MgO и ионы железа в MgO (линию с g-фактором около 4.2). Относительную амплитуду (I_{rel}) спектра Cu²⁺ оценивали из сравнения с амплитудой спектра Fe³⁺ с g-фактором 4.2: (I_{Cu}/I_{Fe}); относительную амплитуду I_{rel} спектра НЭ УМ — из сравнения с четвертой линией спектра Mn²⁺: $(I_{\rm C}/I_{\rm Mn})$. Спектры НЭ Си и УМ регистрировали без ослабления электромагнитного сверхвысокочастотного поля (СВЧ) — при 0 dВ и при ослаблении 20 dB. Насыщаемость резонансных переходов НЭ оценивали из сравнения значений I_{rel} спектров, записанных при полной мощности СВЧ-поля и при 20 dB ослабления: $(I_0 - I_{20})/I_{20}$. Кинетику газообмена О2 и H2 в УВ регистрировали по изменению амплитуды спектра ЭПР НЭ матрицы УВ [8]. Удельные объемы О₂ и H₂, удерживаемые УВ, определяли хроматографическим методом. Текстуру УВ анализировали с помощью растрового электронного микроскопа BS-340 (TESLA).

Результаты и обсуждение. Исходное активированное УВ (АУВ) имеет диаметр около $15\,\mu$ m, адсорбирует при 20°С 0.16 g/g воды и 0.16 g/g бензола (из насыщенных паров в эксикаторе). При 30°С АУВ удерживает 6 ст³/g кислорода и 0.7 ст³/g водорода (по данным хроматографии). Размеры частиц Си на УВ после восстановления в H₂ при 150°С — за пределами разрешения микроскопа (менее 20 nm). После 60 min обработки УВ H₂ при 300°С частицы Си спекаются в агрегаты размером 50–150 nm.

На рис. 1 представлены спектры ЭПР Cu^{2+} , Cu^0 на УВ и в порошке чистой $CuCl_2 \cdot 2H_2O$. Спектры Cu^{2+} в порошке и на УВ до термообработки различаются мало (рис. 1, табл. 1). После сушки при 100°С константа сверхтонкого расщепления (A) в спектрах Cu^{2+} в поликристаллическом образце около 400 G и на УВ — более 500 G. В спектре Cu^{2+} на УВ появляется вторая группа линий. В низкопольной

Рис. 1. Спектры ЭПР Cu^{2+} в $CuCl_2 \cdot 2H_2O$ — в порошке (2, 4, 6, 8) и на АУВ (1, 3, 5, 7): в $CuCl_2$ — после сушки при 100°С (1, 2) и 150°С (3, 4), после восстановления в водороде при 150°С (5, 6) и 300°С (7, 8).

		A, G					
Стадии обработки	g_{\perp}	8∥	A, G	$I_{rel} =$	$(I_{\rm Cu}/I_{\rm Fe})$	Насыща-	(порошок
				0 dB	20 dB	емость	$CuCl_2{\cdot}2H_2O)$
Вакуум, 60°С, 60 min	2.2410	2.0191	350	8.0	7.1	0.13	390
Ar, 100°C, 60 min	2.3837	2.0270	600	5.0	4.6	0.087	390
H ₂ , 150°C, 60 min	2.4841	1.9047	810	6.2	3.3	0.88	487
H ₂ , 300°C, 60 min	3.0215	1.8035	1905	14	16.8	-0.17	500

Таблица 1. Характеристики спектров ЭПР Cu^{2+} и Cu^0 (в поликристаллической $CuCl_2 \cdot 2H_2O$ и на УВ)

части спектра Cu²⁺ проявились линии сверхтонкой структуры. Спектр чистой дисперсной CuCl₂ · 2H₂O после аналогичной сушки изменился меньше. Эти изменения сопровождают дегидратацию CuCl₂ · 2H₂O. Дальнейший нагрев УВ с CuCl2 · 2H2O в аргоне до 150°C сопровождается значительным уменьшением амплитуды спектры Cu²⁺ на УВ за счет превращения Cu²⁺ в Cu⁺ в CuCl с непарамагнитным ионом меди. Подобные изменения интенсивности спектра меди установлены при нагревании аморфного углерода, модифицированного медью, при ее взаимодействии с водородом, связанным с углеродной матрицей [9]. Спектр ЭПР Си²⁺ в чистой CuCl₂ при такой обработке меняется мало. При этом спектр ЭПР НЭ УВ почти не меняется (табл. 2). Скорость вытеснения О2 водородом в порах УВ после разложения кристаллогидрата и последующих превращениях Cu²⁺ в Cu⁺ снижается, а H₂ кислородом меняется мало (табл. 1). Восстановление Cu²⁺ в H₂ при 150°С сопровождается некоторым ростом амплитуды спектра ЭПР Си на УВ (табл. 1).

Меняются релаксационные характеристики НЭ Сu: появляется различие амплитуд спектров при разной мощности резонансного электромагнитного поля. Резонансные переходы НЭ Cu²⁺ в чистой порошкообразной CuCl₂ · 2H₂O после обработки H₂ (150°C) не насыщаются. У спектра Cu на УВ после 60 min восстановления Cu H₂ при 150°C A возрастает более чем в 2 раза. У поликристаллической CuCl₂ после подобной обработки в H₂ спектр Cu² изменяется меньше (рис. 1). При этом у спектра НЭ УМ ширина увеличивается до 6.14 G, уменьшается насыщаемость переходов НЭ. Это свидетельствует об увеличении обменных взаимодействий НЭ УМ с решеткой под влиянием восста-

Таблица 2. Изменение характеристик спектров ЭПР УВ с медью при сушке и обработке водородом

Стадии	Линии ЭПР УВ			Длительность 50% вытеснения, s				Δ <i>H</i> , G		Насыща-
обработки	a daurron	$I_{rel} =$	$_{l}=(I_{\rm C}/I_{\rm Mn})$		кислорода		водорода			емость
	д-фактор	0 dB	20 dB	0 dB	20 dB	0 dB	20 dB	0 dB	20 dB	
Вакуум-	2.00232	0.63	0.24	11.0	-	1.5	3.4	4.52	4.44	1.62
ная сушка										
Сушка в Ar	2.00238	0.66	0.28	3.8	6.7	1.5	2.0	4.89	4.44	1.36
H ₂ , 150°C	2.00245	0.31	0.12	13.0	_	1.5	3.5	5.25	6.14	1.58
H ₂ , 300°C,										
20 min	_	0.35	0.22	9.0	5.0	7.5	5.0	_	_	0.59
60 min	2.00241	0.74	0.27	6.7	4	2.3	1.5	5.47	5.64	1.74

новленной Си. Длительность 50% вытеснения О2 водородом возрастает в 4 раза.

Последущий прогрев в течение 20 min в H₂ при 300°C сопровождается дальнейшим снижением насыщаемости переходов НЭ УМ УВ до 0.59. Длительности 50% вытеснения O₂ водородом и H₂ кислородом оказываются почти равными (рис. 2). Это — следствие выравнивания прочности взаимодействия H₂ и O₂ с УМ. После 60 min выдержки УВ в H₂ при 300°C появляется неразрешенный спектр ЭПР Cu⁰:

Рис. 2. Степень замещения водорода кислородом (1) и кислорода водородом (2) в УВ с Си, после вакуумной сушки при 100° С (a) и обработки водородом при 300° С (b).

 g_{\perp} — 3.0215, g_{\parallel} — 1.8035, с *A* около 1900 G. Значительно изменяется насыщаемость переходов НЭ Сu. При этом скорость замещения H₂ кислородом в УВ увеличивается до значения, характерного для исходного УВ с CuCl₂ (табл. 2). В сторону приближения к исходным значениям изменяются ширина спектра, насыщаемость переходов НЭ УВ. По данным микроскопического анализа УВ, частицы Cu⁰ после 1 h прогрева УВ в H₂ при 300°С спеклись в агрегаты размером 50–150 nm. Следовательно, взаимодействие Cu⁰ и УМ уменышалось за счет укрупнения частиц Cu⁰. Таким образом, длительная выдержка УВ с Cu в H₂ при 300°С приводит к укрупнению частиц и ослаблению связи Cu⁰ с УМ и УМ с H₂.

Подобие изменений интенсивности спектра меди при нагревании и взаимодействии с водородом в углеродной матрице [9] или в нашей работе — сорбированным на поверхности может свидетельствовать об определяющей роли в процессе восстановления меди матрицы, обменного взаимодействия углерод-наночастицы меди. Перенос части заряда с Cu⁰ на УМ (до 0.4 e⁻) выявлен в работе [10]. Он проявляется, в частности, в увеличении проводимости матрицы.

Список литературы

- [1] Крылов О.В., Киселев В.Ф. Адсорбция и катализ на переходных металлах и их оксидах. М., 1981. С. 288.
- [2] Nishi Y., Suzuki T., Kaneko K. // Carbon. 1998. V. 36. P. 1870-1871.
- [3] Ryu S.K., Lee W.K., Park S.J., Edie D.D. // Extended Abstract Intern. Conf. Carbon 2004, Providence, Rhode Island. USA, July 11–16 2004 (CD ROM, L008).
- Yoshikawa M., Yasutake A., Mochida I. // Applied catalysis A: General. 1998.
 V. 173. P. 239–245.
- [5] Juntaravijit T.C., Halet G., Poovey H.G. et al. // Gas Chromatograhpy. AIHAJ. 2000. V. 61. P. 410–414.
- [6] Choi S.R., Ryu S.K., Park S.J. et al. // Extended Abstract Intern. Conf. Carbon 2004, Providence, Rhode Island. USA, July 11–16 2004 (CD ROM, L014).
- [7] Блюменфельд Л.А., Воеводский В.В., Семенов А.Г. Применение электронного парамагнитного резонанса в химии. Новосибирск, 1962. С. 240.
- [8] Berveno V. // Fuel. 1998. V. 77. N 7. P. 791-792.
- [9] Звонарева Т.К., Иванов-Омский В.И., Попов Б.П., Штельмах К.Ф. // Письма в ЖТФ. 2000. Т. 26. В. 24. С. 56–63.
- [10] Иванов-Омский В.И., Сморгонская Э.А. // ФТТ. 1999. Т. 41. В. 5. С. 868-870.