06;07 Примесный пробой и люминесценция терагерцового диапазона в электрическом поле в микроструктурах *p*-GaAs и *p*-GaAsN

© Л.Е. Воробьев, Д.А. Фирсов, В.А. Шалыгин, В.Ю. Паневин, А.Н. Софронов, Д.В. Цой, А.Ю. Егоров, А.Г. Гладышев, О.В. Бондаренко

С.-Петербургский государственный политехнический университет Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: shalygin@rphf.spbstu.ru

Поступило в Редакцию 28 декабря 2005 г.

В напряженных слоях GaAsN: Ве исследованы вольт-амперные характеристики в области прыжковой проводимости и в условиях примесного пробоя, а также электролюминесценция в терагерцовом диапазоне. Аналогичные исследования проведены в ненапряженных слоях GaAs: Ве. Показано, что в условиях примесного пробоя оптические переходы между расщепленными сжатием акцепторными уровнями дают доминирующий вклад в интегральную интенсивность излучения напряженных микроструктур GaAsN: Be.

PACS: 42.50.Xa

В настоящее время в науке и технике используются разнообразные источники когерентного излучения терагерцового ($T\Gamma$ ц) диапазона: молекулярные газовые лазеры, лазеры на свободных электронах, лазеры на горячих дырках в *p*-Ge, лазеры на основе квантово-размерных структур (в том числе квантово-каскадные), лазеры на полупроводниках с мелкими примесями. Не останавливаясь на достоинствах и недостатках всех перечисленных источников излучения, отметим, что разработки новых лазеров на полупроводниках с мелкими примесями весьма перспективны с точки зрения создания малогабаритных стабильных $T\Gamma$ ц-источников.

В работе [1] было впервые экспериментально показано, что индуцированное излучение ТГц-диапазона, наблюдаемое при одноосном сжатии германия *p*-типа в сильных электрических полях, обусловлено инверсной заселенностью расщепленных сжатием акцепторных уровней.

34

Известно, что в Ge, Si и в большинстве соединений А^{III}В^V одноосная деформация снимает вырождение вершины валентной зоны и приводит к расщеплению основного состояния акцептора. При определенной деформации акцепторный уровень, связанный с подзоной тяжелых дырок, попадает в сплошной спектр подзоны легких дырок и становится резонансным. Механизм возникновения внутрицентровой инверсной населенности между этим резонансным состоянием и локализованным состоянием акцептора, связанным с подзоной легких дырок, рассмотрен в [2,3]. В условиях, когда интервал между резонансным уровнем и дном подзоны легких дырок меньше энергии оптического фонона, сильные электрические поля опустошают локализованное состояние в запрещенной зоне за счет процесса ударной ионизации, приводят к захвату и накоплению дырок на резонансном уровне, а также в состояниях подзоны легких дырок с близкой энергией. Таким образом, внутрицентровая инверсия населенности и внутризонная инверсия населенности формируются одновременно. В [1] эксперименты проводились при направлении электрического поля, параллельном направлению сжатия. Проведенные в [4] исследования показали, что с точки зрения получения стимулированного ТГц-излучения в одноосно сжатом *p*-Ge предпочтительнее выбирать направление электрического поля перпендикулярно направлению сжатия.

С точки зрения практических применений, в ТГц-лазере на мелких примесях для создания одноосной деформации целесообразно использовать не внешнее давление, а встроенные механические напряжения, возникающие в чередующихся тонких слоях полупроводников с различными периодами кристаллической решетки. В работе [5] был реализован подобный лазер на основе легированных бором наноструктур Si/Si_{1-x}Ge_x/Si, выращенных на кремниевой подложке. Импульсное электрическое поле прикладывалось в плоскости квантово-размерного слоя Si_{1-x}Ge_x, т. е. перпендикулярно направлению деформации. Показано, что наблюдавшееся стимулированное ТГц-излучение ($\lambda \sim 100 \, \mu$ m) обусловлено инверсией населенности между резонансным и локализованным акцепторными состояниями.

Аналогичный механизм создания внутрицентровой инверсии населенности может быть также реализован в напряженных микроструктурах *p*-GaAsN/GaAs. Такие микроструктуры легко скалываются по плоскостям спайности, что облегчает процедуру изготовления высокодобротного оптического резонатора и делает их более привлекатель-

ными для изготовления ТГц-лазеров по сравнению со структурами $p-Si_{1-x}Ge_x/Si$.

В данной работе проведены первые исследования, нацеленные на создание ТГц-лазера на основе напряженных микроструктур GaAsN/GaAs, легированных бериллием. Исследованы вольт-амперные характеристики (BAX) в широком диапазоне полей, обнаружена эмиссия спонтанного ТГц-излучения в условиях примесного пробоя. Параллельно проведены аналогичные исследования в ненапряженных слоях GaAs, легированных бериллием. Сопоставление результатов для напряженных слоев *p*-GaAsN и ненапряженных слоев *p*-GaAs позволяет, в принципе, вычленить вклад оптических переходов между расщепленными сжатием акцепторными уровнями в эмиссию излучения напряженных микроструктур *p*-GaAsN в условиях примесного пробоя. В ТГц-диапазоне заметный вклад в эмиссию излучения из этих структур могут также давать прямые межподзонные переходы дырок, переходы зона—акцептор и тепловое излучение кристаллической решетки.

Основные эксперименты проведены при температуре T = 4.2 К. Исследования в области примесного пробоя и в постпробойных полях проводились в импульсном режиме (длительность импульса электрического поля составляла $10 \,\mu$ s), а в предпробойной области измерения проводились на постоянном токе. В исследованиях электролюминесценции (ЭЛ) использовался фотоприемник Ge:Ga, спектральная полоса чувствительности которого простирается от 60 до $110 \,\mu$ m, при этом регистрировался интегральный сигнал фотоответа.

Концентрация азота [N] в слоях GaAsN составляла 1.8%. Как показывают оценки, проведенные в соответствии с [2,6], при этом энергии внутрицентровых переходов дырок $1s^r - 2p$ и $2p^r - 1s$ лежат в области чувствительности фотоприемника Ge:Ga. Напряженная микроструктура *p*-GaAsN/GaAs была выращена методом молекулярно-пучковой эпитаксии на полуизолирующей подложке GaAs, ориентированной в плоскости (001). Структура содержит 10 периодов чередующихся слоев GaAsN возникают механические напряжения, эквивалентные одноосной деформации сжатия в направлении роста структуры. Слои GaAsN были легированы акцепторной примесью (Be) с концентрацией $N_A = 3 \cdot 10^{17} \text{ cm}^{-3}$, в слоях GaAs легирование не проводилось.

В качестве реперных образцов методом молекулярно-пучковой эпитаксии были выращены ненапряженные микроструктуры *p*-GaAs/GaAs

Чтобы определить диапазон электрических полей, в котором происходит примесный пробой, были исследованы вольт-амперные характеристики (рис. 1). Сравнивая ВАХ для ненапряженных слоев *p*-GaAs с различной концентрацией Ве (кривые *1, 2* и *3*), можно заключить, что в допробойной области электрических полей (E < 100 V/cm) ВАХ близка к линейной, и проводимость в этой области носит прыжковый характер. Действительно, при понижении концентрации акцепторов от $4.2 \cdot 10^{17}$ до $1.2 \cdot 10^{17}$ сm⁻³ электропроводность уменьшается в $2 \cdot 10^6$ раз, что соответствует экспоненциальной зависимости от концентрации, характерной для прыжковой проводимости [7]:

$$\sigma(N_A) = \sigma_0 \exp\left(-\frac{1.73}{aN_A^{1/3}}\right) \exp\left(-\frac{E_{\rm F} - E_A}{kT}\right),$$

где a — эффективный боровский радиус (для GaAs: Ве энергия основного состояния акцептора $E_A = 28$ meV и a = 3.9 nm [7,8]), k — постоянная Больцмана, E_F — энергия Ферми, которая зависит от уровня легирования и степени компенсации. При увеличении напряженности электрического поля наблюдается резкий (на несколько порядков) рост электропроводности, соответствующий примесному пробою (кривые 1 и 2). При достаточно сильных полях, когда все акцепторы уже ионизованы, ВАХ снова близка к линейной и определяется подвижностью дырок в валентной зоне. Наиболее отчетливо это видно для образца с $N_A = 2.8 \cdot 10^{16}$ cm⁻³ (кривая 1), в этом образце в поле 1000 V/ст ионизовано 80% акцепторов. При увеличении концентрации акцепторов напряженность поля пробоя растет. Отметим, что при $N_A = 4.2 \cdot 10^{17}$ сm⁻³ подвижность дырок в валентной зоне и участок примесного пробоя практически незаметен (кривая 3).

ВАХ напряженной микроструктуры *p*-GaAsN/GaAs при T = 4.2 К (кривая 4) имеет подобный вид: в полях до 100 V/ст наблюдается прыж-

Рис. 1. ВАХ ненапряженных слоев *p*-GaAs с различным уровнем легирования при T = 4.2 K (*I*-3) и напряженных слоев *p*-GaAsN при T = 4.2 K (*4*) и T = 77 K (*4*').

ковая проводимость, затем начинается примесный пробой и проводимость легированных эпитаксиальных слоев растет, так как подвижность дырок в валентной зоне примерно на два порядка выше. При T = 77 K

Рис. 2. Электролюминесценция напряженных слоев *p*-GaAsN (1, 2) и ненапряженных слоев *p*-GaAs (3, 4) при T = 4.2 К. Пояснения в тексте.

практически все акцепторы этой структуры термически ионизованы и ВАХ близка к линейной во всем диапазоне полей (кривая 4'). Сопоставление экспериментальных данных для обеих температур позволяет заключить, что при T = 4.2 К в полях свыше 2000 V/ст бо́льшая часть примесей ионизована.

Результаты исследования электролюминесценции напряженных слоев *p*-GaAsN и ненапряженных слоев *p*-GaAs с близким уровнем легирования приведены на рис. 2. Интегральный сигнал фотоответа $U_{\rm PD}$ представлен как функция удельной мощности, выделяемой при протекании электрического тока в образце. Кривая 1 представляет собой измеренную в эксперименте люкс-ваттную характеристику слоев *p*-GaAsN с концентрацией акцепторов $3 \cdot 10^{17}$ сm⁻³, а кривые 3 и 4 представляют аналогичные результаты для слоев *p*-GaAs с концентра-

Рис. 3. Энергетические диаграммы для дырок в напряженных слоях p-GaAsN (a) и ненапряженных слоях p-GaAs (b). Стрелками показаны оптические переходы дырок, соответствующие полосе чувствительности фотоприемника Ge:Ga.

циями акцепторов $4.2 \cdot 10^{17}$ и $1.2 \cdot 10^{17}$ сm⁻³ соответственно. Эмиссия ТГц-излучения в слоях *p*-GaAs обусловлена прямыми межподзонными переходами дырок, переходами зона—акцептор (переходы показаны на рис. 3, *b*) и тепловым излучением кристаллической решетки. В слоях *p*-GaAsN дополнительно к этим трем каналам эмиссии излучения может наблюдаться излучение, обусловленное оптическими переходами дырок между расщепленными сжатием акцепторными уровнями (рис. 3, *a*); как уже отмечалось, именно этот механизм предполагается использовать для создания ТГц-лазера.

Вычитая из экспериментальной кривой 1 результат эвристической интерполяции к $N_A = 3 \cdot 10^{17}$ cm⁻³ экспериментальных кривых 3 и 4, получаем кривую 2, которая приближенно характеризует интегральную интенсивность излучения, обусловленного внутрицентровыми переходами дырок в слоях *p*-GaAsN. В итоге можно сделать вывод, что именно этот механизм излучения доминирует в напряженных слоях *p*-GaAsN.

Работа поддержана Российским фондом фундаментальных исследований (грант № 05-02-17225).

Список литературы

- [1] Алтухов И.В., Каган М.С., Королев К.А., Синис В.П. // Письма в ЖЭТФ. 1994. Т. 59. № 7. С. 455–459.
- [2] Алтухов И.В., Каган М.С., Королев К.А., Одноблюдов М.А., Синис В.П., Чиркова Е.Г., Яссиевич И.Н. // ЖЭТФ. 1999. Т. 115. № 1. С. 89–100.
- [3] Odnoblyudov M.A., Yassievich I.N., Kagan M.S., Galperin Yu.M., Chao K.A. // Phys. Rev. Lett. 1999. V. 83. N 3. P. 644–647.
- [4] Бондарь В.М., Воробьев Л.Е., Далакян А.Т., Тулупенко В.Н., Фирсов Д.А. // Письма в ЖЭТФ. 1999. Т. 70. № 4. С. 257–261.
- [5] Altukhov V.I., Chirkova E.G., Sinis V.P., Kagan M.S., Gousev Yu.P., Thomas S.G., Wang K.L., Odnoblyudov M.A., Yassievich I.N. // Appl. Phys. Lett. 2001. V. 79. N 24. P. 3909–3911.
- [6] Егоров А.Ю., Семенова Е.С., Устинов В.М., Нопд Ү.G., Ти С. // ФТП. 2002.
 Т. 36. № 9. С. 1056–1059.
- [7] Шкловский Б.И., Эфрос А.Л. Электронные свойства легированных полупроводников. М.: Наука, 1979. 416 с.
- [8] Малышев А.В. // ФТТ. 2000. Т. 42. № 1. С. 29–35.