03,04

Высокотемпературная теплоемкость Sm_2CuO_4 и $Ho_2Cu_2O_5$

© В.М. Денисов, Л.Т. Денисова, Л.Г. Чумилина, С.Д. Кирик

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 27 февраля 2013 г.)

Получены экспериментальные данные по теплоемкости Sm₂CuO₄ (329–839 K) и Ho₂Cu₂O₅ (359–751 K). По опытным данным определены термодинамические свойства оксидных соединений.

1. Введение

После открытия высокотемпературной сверхпроводимости не ослабевает интерес к купратам лантаноидов. В работах [1,2] указано, что в системах CuO-Ln₂O₃ соединения Ln₂CuO₄ образуются, как правило, для Ln \equiv La, Pr, Nd, Sm, Eu, Gd. В случае Ln \equiv Tb \div Lu, Y, Sc образуются соединения Ln₂Cu₂O₅. Представителем первой группы является Sm₂CuO₄, второй — Но₂Си₂О₅. Согласно диаграмме состояния СиО-Sm₂O₃ в системе на воздухе образуется только одно соединение Sm₂CuO₄ [3]. Последнее подтверждено термодинамическим анализом фазовых равновесий в системе Sm-Си-О при парциальном давлении кислорода 21 kPa[4]. Влияние температуры на стабильность соединений этой системы исследовано в работе [5]. Термодинамические свойства Sm₂CuO₄ определены разными авторами: 968–1230 К [5], 1173–1340 К [6], 1190–1320 К [7], 1000-1230 К [8]. Теплоемкость этого соединения при низких температурах измерена в работе [9], а при высоких — [10].

Менее исследованным является представитель второй группы $Ho_2Cu_2O_5$, для которого имеются данные по магнитным свойствам [11,12]. Сведения о термодинамических свойствах этого соединения для интервалов температур 960–1300 К и 1000–1230 К приведены в работах [13] и [8] соответственно.

Тем не менее, многие свойства Ho₂Cu₂O₅ еще не исследованы. В первую очередь это касается теплофизических свойств.

Целью настоящей работы является исследование высокотемпературной теплоемкости и определение по этим данным термодинамических свойств соединений Sm₂CuO₄ и Ho₂Cu₂O₅.

2. Эксперимент

Образцы Sm₂CuO₄ и Ho₂Cu₂O₅ были приготовлены методом твердофазного синтеза. После гомогенизации и последующего прессования таблетки отжигали на воздухе при 1273 K в течении 25 h с 5 промежуточными перетираниями и прессованием. Контроль полученных образцов проводили с использованием рентгенофазового анализа. На рентгенограммах, полученных на приборе Х'Pert Рго фирмы Panalytical (Нидерланды), присутствовали только рефлексы, отвечающие соединениям Sm₂CuO₄ и Ho₂Cu₂O₅. Из рентгенограмм определялся параметр решетки методом подгонки по полному профилю, без ссылки на структуру. Полученные данные приведены на рис. 1 и 2. При комнатной температуре образец Sm₂CuO₄ имел тетрагональную структуру (пространственная группа *I*4/*mmm*) с параметрами решетки a = 3.9146 Å, c = 11.9720 Å. Эти результаты близки к данным [14,15]: a = 3.92 Å, c = 11.97 Å и [16]: a = 3.921(1) Å, c = 11.994(2) Å, в тоже время незначительно отличаются от данных, приведенных в [17].

При комнатной температуре образец Ho₂Cu₂O₅ имел орторомбическую структуру с параметрами решетки a = 10.8096 Å, b = 3.4962 Å, c = 12.4735 Å, что близко к результатам, приведенным в работах [2,18].

Измерение теплоемкости проводили на приборе STA 449 C Jupiter (NETZSCH). Методика экспериментов подобна описанной в [19,20].

3. Результаты и их обсуждение

На рис. З показана температурная зависимость теплоемкости Sm_2CuO_4 . Видно, что значения C_p закономерно

Рис. 1. Дифрактограмма Sm₂CuO₄ при комнатной температуре.

Рис. 2. Дифрактограмма Ho₂Cu₂O₅ при комнатной температуре.

Рис. 3. Температурная зависимость теплоемкости Sm_2CuO_4 : *I* — наши данные, *2* — [10], *3* — [9].

увеличиваются с ростом температуры, а на кривой $C_p = f(T)$ нет различного рода экстремумов. Полученные данные могут быть описаны уравнением (в единицах J/(mol · K)):

$$C_p = 169.41 + 41.20 \cdot 10^{-3}T - 2.11 \cdot 10^{6}T^{-2}.$$
 (1)

Здесь же приведены данные по теплоемкости Sm₂CuO₄, полученные в работах [9,10]. Видно, что лучшее согласие наших результатов наблюдается с данными [9]. Наибольшие значения C_p получены в работе [10]. Кроме того, по нашим данным $C_{p,298} = 157.9 \text{ J/(mol} \cdot \text{K})$, согласно [9] ~ 152 J/(mol · K) (взято из графика), тогда как по данным [10] эта величина равна ~ 188.8 J/(mol · K). Из этих результатов следует, что и в этом случае максимальные значения получены в работе [10].

Можно отметить, что при температурах выше 400 К значения C_p , полученные нами, превышают классический предел Дюлонга-Пти $3R_s$, где R — универсальная

газовая постоянная, s — число атомов в формульной единице Sm₂CuO₄ (s = 7).

Значение характеристической температуры Дебая, полученное нами на основании величин С_р при низкой температуре для Sm₂CuO₄ равно $\Theta_D = 315$ K, что не сильно отличается от данных 310 К [9] и 353 К [21]. Найденное значение Θ_D было использовано для расчета С_р в модели Дебая [22]. Заметим, что в модели Дебая рассчитывают C_V, а не C_p. Предположено, что в первом приближении C_p и C_V для Sm₂CuO₄ не сильно отличаются между собой. Это позволило сравнивать рассчитанные значения в модели Дебая с экспериментом. Установлено, что начиная с температуры ~ 390 К Θ_D наблюдается некоторое различие рассчитанных и экспериментальных значений С_p, причем с ростом температуры это различие увеличивается (рис. 4). Анализ этих результатов проведем, как и в [23,24], в предположении, что избыточная теплоемкость в анализируемом интервале температур описывается соотношением

$$\Delta C = R\left(\frac{\Theta_E}{T}\right)^2 \exp\left(-\frac{\Theta_E}{T}\right),\tag{2}$$

где Θ_E — характеристическая температура Эйнштейна. Представление полученных результатов в соответствии с уравнением (2) дает прямую линию (рис. 4) со значением коэффициента корреляции r = 0.998. Соблюдение вкладов типа (2), по мнению [23], означает, что колебательный спектр соединения Sm₂CuO₄ имеет локализованную оптическую моду, которая образуется в упорядоченных системах, если массы атомов компонентов существенно различаются.

Тепловые колебания и структура квазидвумерных кристаллов Ln_2CuO_4 исследованы рентгеновскими дифракционными методами [16]. Отмечено, что в кристаллах Ln_2CuO_4 наблюдается ситуация, когда преобладающими и фактически определяющими структуру кристалла

Рис. 4. Сглаженные значения теплоемкости Sm_2CuO_4 (1), расчет по модели Дебая (2), аппроксимация избыточной теплоемкости функцией Эйнштейна при $T \ll \Theta_E$ (3).

являются искажения решетки, обусловленные эффектом Яна-Теллера ионов меди или редкоземельными ионами (РЗИ). Подчеркнуто, что в Sm₂CuO₄ таковыми являются ян-теллеровские взаимодействия РЗИ. Кроме того, показано, что при T = 373 К вибронные кооперативные эффекты Яна-Теллера ни для ионов Sm³⁺, ни для ионов Cu²⁺ не наблюдаются. Это дало основание [16] предположить, что в температурном интервале 300–373 К в Sm₂CuO₄ происходит структурный фазовый переход. Сделано допущение, что в Sm₂CuO₄ при T > 296 К преобладающими являются орбиталь — орбитальные взаимодействия через 2D — спиновые флуктуации в слоях CuO₂. Не исключено, что все это обусловливает влияние температуры на поведение теплоемкости данно-го соединения.

Наличие зависимости $C_p = f(T)$ для Sm₂CuO₄ (1) позволяет по известным термодинамическим уравнениям рассчитать изменения энтальпии $H_T^0 - H_{329}^0$ и энтропии $S_T^0 - S_{329}^0$. Эти данные приведены в табл. 1.

Температурная зависимость теплоемкости Ho₂Cu₂O₅ приведена на рис. 5. Как и в предыдущем случае на зависимости $C_p = f(T)$ нет различных экстремумов, а значения C_p закономерно растут с увеличением температуры. Полученные данные могут быть описаны следующим уравнением (в единицах J/(mol·K)):

$$C_p = 216.72 + 18.40 \cdot 10^{-3}T - 11.92 \cdot 10^5 T^{-2}.$$
 (3)

Поскольку данные для высокотемпературной зависимости теплоемкости Ho₂Cu₂O₅ отсутствуют, то сравнить

Τ, Κ	$C_p, \mathbf{J}/(\mathrm{mol}\cdot\mathbf{K})$	$H_T^0 - H_{329}^0$, kJ/mol	$S_T^0 - S_{329}^0$, J/(mol · K)
329	163.4	_	_
350	166.6	3.47	10.21
400	172.7	11.95	32.87
450	177.5	20.71	53.50
500	181.6	29.69	72.41
550	185.1	38.86	89.89
600	188.3	48.19	106.1
650	191.2	57.68	121.3
700	193.9	67.31	135.6
750	196.6	77.07	149.1
800	199.1	86.96	161.8

Таблица 1. Термодинамические свойства Sm₂CuO₄

Таблица 2. Термодинамические свойства Ho₂Cu₂O₅

Т, К	$C_p, \mathbf{J}/(\mathrm{mol}\cdot\mathbf{K})$	$H_T^0 - H_{359}^0$, kJ/mol	$S_T^0 - S_{359}^0, J/(mol \cdot K)$
359	214.1	_	—
400	216.6	8.831	23.29
450	219.1	19.73	48.96
500	221.2	30.74	72.15
550	222.9	41.84	93.31
600	224.5	53.02	112.8
650	225.9	64.28	130.8
700	227.2	75.61	147.6
750	228.3	87.00	163.3

Рис. 5. Влияние температуры на теплоемкость $Ho_2Cu_2O_5$. *1* — эксперимент, *2* — расчет по модели Дебая, *3* — аппроксимация избыточной теплоемкости функцией Эйнштейна при $T \ll \Theta_E$.

полученные нами значения C_p с другими не представлялось возможным. Тем не менее, рассчитанное значение $C_{p,298}^{ad} = 200.7 \text{ J/(mol} \cdot \text{K})$ в предположении аддитивного вклада соответствующих оксидов (CuO [25], Ho₂O₃ [26]), достаточно близко к рассчитанному по уравнению (3) $C_{p,298} = 208.8 \text{ J/(mol} \cdot \text{K}).$

С использованием уравнения (3) для $Ho_2Cu_2O_5$ рассчитаны $H_T^0 - H_{359}^0$ и $S_T^0 - S_{359}^0$. Эти данные приведены в табл. 2.

Значение Θ_D для Ho₂Cu₂O₅ по нашим данным равно 330 К. С использованием этой величины проведен расчет C_p по модели Дебая. Из рис. 5 следует, что и для этого соединения наблюдается различие рассчитанных и экспериментальных значений C_p . Представление ΔC в соответствии с уравнением (2) в координатах $\ln(\Delta CT^2) - 1/T$ дает прямую линию с изломом при ≈ 532 К со значениями коэффициентов корреляции, равными 0.997 и 0.998 для высоко- и низкотемпературного интервалов соответственно (рис. 5).

4. Заключение

Исследована температурная зависимость теплоемкости Sm₂CuO₄ и Ho₂Cu₂O₅. Показано, что модель Дебая не описывает экспериментальные значения C_p во всем исследованном интервале температур.

Список литературы

 А.П. Арсеньев, Л.М. Ковба, Х.С. Багдасаров, Б.Ф. Джуринский, А.В. Потемкин, Б.И. Покровский, Ф.М. Спиридонов, В.А. Антюхов, В.В. Илюхин. Соединения редкоземельных элементов. Системы с оксидами элементов I–III групп. Наука, М. (1983). 280 с.

- [2] High-temperature superconducting materials science and engineering. New concepts and technology / Ed. D. Shi. Pergamon, University. Cincinnati, USA (1995). 480 p.
- [3] H. Takeda, M. Okuno, M. Ohgaki, K. Yamashita, M. Matsumoto. J. Mater. Res. 15, 9, 1905 (2000).
- [4] В.А. Лысенко. Неорган. материалы 47, 8, 977 (2011).
- [5] R. Subasri, R. Pankajavalli, O.M. Sreedharan. Physica C 281, 85 (1997).
- [6] Yu.D. Tretyakov, A.R. Kaul, N.V. Makukhin. J. Solid State Chem. 17, 1–2, 183 (1976).
- [7] А.Н. Петров, А.Ю. Зуев, В.А. Черепанов. ЖФХ 62, 11, 3092 (1988).
- [8] М.Л. Ковба, А.Л. Емелина, М.М. Батук, В.В. Сорокин. ЖФХ 85, 9, 1650 (2011).
- [9] H. Holubar, G. Schaudy, N. Pillmayr, G. Hilscher, M. Divis, V. Nekvasil. J. Magn. Magn. Mater. 104–107, 479 (1992).
- [10] X. Xing, Z. Qiao, S. Wei. Metall. Mater. Trans. B 27B, 973 (1996).
- [11] A.F. Andresen, M. Golab, A. Szytula. J. Magn. Magn. Mater. 95, 2, 195 (1991).
- I.V. Golosovsky, V.P. Plakhty, V.P. Harchenkov, S.V. Starigin, J. Schweizer, J. Magn. Magn. Mater. 129, 2–3, 233 (1994).
- [13] M. Kopyto, K. Fitzner. J. Mater. Sci. 31, 2797 (1996).
- [14] S. Yamanaka, H. Kobayashi, K. Kurosaki. J. Alloys Comp. 349, 321 (2003).
- [15] S. Yamanaka, H. Kobayashi, K. Kurosaki. J. Alloys Comp. 349, 269 (2003).
- [16] Е.И. Головенчиц, В.А. Санина, А.А. Левин, Ю.Ф. Шепелев, Ю.И. Смолин. ФТТ 44, 11, 2035 (2002).
- [17] И.С. Шаплыгин, Б.Г. Кахан, В.Б. Лазарев. ЖНХ 24, 6, 1478 (1979).
- [18] J.L. Garcia-Munoz, J.J. Rodriguez-Carvajal. J. Solid State Chem. 115, 324 (1995).
- [19] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [20] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова, В.В. Иванов. ТВТ 48, 5, 790 (2010).
- [21] K. Berggold, T. Lorenz, J. Baier, M. Kriener, D. Senff, H. Roth, A. Severing, H. Hartmann, A. Freimuth. Phys. Rev. B 73, 104 430 (2006).
- [22] С.М. Скуратов, В.П. Колесов, А.Ф. Воробьев. Термохимия.Ч. II. МГУ, М. (1966). 434 с.
- [23] А.Ф. Прекул, В.А. Казанцев, Н.И. Щеголихина, Р.И. Гуляева, К. Edagawa. ФТТ **50**, *11*, 1933 (2008).
- [24] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, Г.С. Патрин, Н.В. Волков, Л.Г. Чумилина. ФТТ 55, 4, 636 (2013).
- [25] J. Leitner, D. Sedmidubský, P. Chuchvalec. Ceramics–Silikaty 46, 1, 29 (2002).
- [26] С.П. Гордиенко, Б.В. Феночка, Г.Ш. Виксман. Термодинамика соединений лантаноидов. Наук. думка, Киев (1979). 376 с.