06;08 Восстановление фотоэлектрических параметров кремниевых солнечных элементов, облученных у-квантами ⁶⁰Со, с помощью ультразвуковой обработки

© Н.А. Гусейнов, Я.М. Олих, Ш.Г. Аскеров

Институт физики НАН Азербайджана, Баку E-mail: nguseynov@mail.ru Институт физики полупроводников им. Лашкарёва НАН Украины, Киев E-mail: jaroluk3@ukr_net Бакинский государственный университет, Азербайджан

Поступило в Редакцию 19 июня 2006 г.

Показана возможность восстановления с помощью ультразвуковой обработки фотоэлектрических свойств кремниевых солнечных элементов, предварительно облученных γ -квантами ⁶⁰Со. Отмечается, что наблюдаемое увеличение максимальной выходной мощности кремниевых солнечных элементов после ультразвуковой обработки связано с повышением однородности кристаллической структуры и перераспределением в ней радиационных дефектов.

PACS: 72.50.+b, 61.82.Fk

Как известно, при облучении полупроводниковых приборов заряженными частицами высоких энергий происходит накопление в объеме полупроводника радиационных дефектов, что приводит к существенному ухудшению электрофизических и фотоэлектрических характеристик приборов [1,2]. Контролируемое воздействие на дефектную структуру полупроводникового прибора в области p-n-перехода и базовой области позволяет целенаправленно корректировать его характеристики. Традиционно для этих целей используют термический отжиг, хотя в последнее время большое внимание уделяют атермическим способам обработки. Учитывая результаты многочисленных работ по акустостимулированному улучшению свойств полупроводниковых материалов [3–6], использование для этой цели ультразвуковых (УЗ) волн может оказаться также эффективным способом и для приборов. В данной работе исследовано восстановление с помощью ультразвуковой

38

	Рассчитанные	значения	параметр	ов СЭ	(при	300 K
--	--------------	----------	----------	-------	------	-------

Состояние	Параметры					
образца	N_{ef} , cm ⁻³	Α	$I_0, \mu A$	$L_n, \mu m$	$ au_n, \mu s$	
До облучения	$2.17\cdot 10^{16}$	2.58	88.2	51.0	0.78	
После ү-облучения	$3.14\cdot10^{16}$	2.85	287.0	44.9	0.60	
После УЗО-1	$2.92\cdot 10^{16}$	2.78	276.0	48.5	0.70	
После УЗО-2	$2.48\cdot 10^{16}$	2.67	135.0	49.6	0.73	

обработки (УЗО) первоначальных свойств кремниевых солнечных элементов (СЭ), свойства которых ухудшились в результате радиационного облучения.

СЭ изготовлялись диффузией фосфора в кремниевую монокристаллическую пластину р-типа проводимости с исходной концентрацией дырок $N_a \sim 1 \cdot 10^{16} \,\mathrm{cm}^{-3}$. Толщина верхнего диффузионного слоя *n*-типа ($N_d \sim 10^{20} \, {
m cm^{-3}}$) составляет $d_n = 0.3 \, \mu{
m m}$, а толщина базы $d_p = 280 \,\mu \text{m}$ [7]. Площади исследуемых кремниевых СЭ составляли 1 ст². СЭ облучались при комнатной температуре у-квантами Со⁶⁰ до дозы $\sim 10^6$ rad. Затем эти образцы были последовательно, в два этапа, подвергнуты УЗО; продольная волна вводилась с тыльной стороны образца, перпендикулярно к его рабочей поверхности. На первом этапе УЗО-1 (частота $f_{US} \sim 9 \text{ MHz}$, интенсивность $W_{US} \sim 0.5 \text{ W/cm}^2$, продолжительность $t \sim 120 \text{ min}$); на втором, УЗО-2, ($f_{US} \sim 27 \text{ MHz}$, $W_{US} \sim 1 \, \text{W/cm}^2$ и $t \sim 200 \, \text{min}$). После каждого этапа УЗО измерялись вольт-амперные характеристики (BAX) в широком интервале температур $(100 \div 350 \text{ K})$ и вольт-фарадные характеристики (ВФХ) СЭ. Из емкостных измерений определялись значения времени жизни неосновных носителей τ_n и эффективной концентрации ионизированных центров N_{ef} [8]. Параметры СЭ до и после соответствующих обработок приведены в таблице.

На рис. 1 приведены ВАХ солнечных элементов. Видно, что γ -облучение приводит к ухудшению ВАХ по сравнению с исходной (уменьшение тока в прямом направлении I_D — рис. 1, кривая 2' и увеличение на несколько порядков обратного тока I_R , кривая 2). Последующие УЗО-1 и особенно УЗО-2 восстанавливают характеристики СЭ, приближая их к исходным (кривые 3 и 4). Влияние γ -облучения и УЗО непосредственно

Рис. 1. Сравнительные измеренные прямые ветви ВАХ солнечного элемента (индексы со штрихами) и обратные при 200 К на разных этапах обработки. Кривые: *1* — исходная; *2* — после γ-облучения дозой 10⁶ rad; *3* — после УЗО-1; *4* — после УЗО-2.

на фотоэлектрические параметры СЭ показаны на рис. 2. Видно, что γ -облучение снижает напряжение холостого хода U_{oc} , ток короткого замыкания I_{sc} и максимальную выходную мощность P_{\max} , последующие же УЗО повышают их, приближая к исходным значениям. Отметим, что изменения при ультразвуковой обработке ВАХ и ВФХ исходных (до γ -облучения) СЭ значительно меньше зависят от режимов обработки и определяются в основном акустостимулированными процессами релаксации внутренних механических напряжений [5].

Величина фототока определяется из выражения [8]:

$$I_F = q S N_F Q, \tag{1}$$

где q — заряд электрона, SN_F — общее количество фотогенерированных электронно-дырочных пар на площадке S, Q — коэффициент

Рис. 2. Изменение относительных величин U_{oc}/U_{oc0} (*a*), I_{sc}/I_{sc0} (*b*) и $P_{\max}/P_{\max}(c)$ СЭ при 300 К на разных этапах его обработки. Точки на абсциссе: I — исходная; 2 — после γ -облучения дозой 10⁶ rad; 3 — после УЗО-1; 4 — после УЗО-2.

собирания. Поскольку величина SN_F остается практически постоянной в условиях данного эксперимента, то происходящее в результате обработок падение фототока СЭ, очевидно, обусловлено уменьшением Q. В свою очередь, когда диффузионная длина неосновных носителей в базе $L_n \ll d_p$, величина Q определяется из [9]:

$$Q = \frac{\alpha L_n}{\alpha L_n + 1},\tag{2}$$

где α — коэффициент поглощения света, $L_n = \sqrt{D_n \tau_n}$, D_n — коэффициент диффузии электронов.

Напомним, что, в соответствии с [8], напряжение холостого хода U_{oc} определяется как

$$U_{oc} \approx \frac{AkT}{q} \ln \frac{I_{sc}}{I_0},\tag{3}$$

где *k* — постоянная Больцмана, *T* — температура, *A* — безразмерный коэффициент, характеризующий скорость рекомбинации в слое

объемного заряда, I_0 — обратный ток насыщения, протекающий через p-n-переход, I_{sc} — ток короткого замыкания. Как показывают наши оценки, облучение γ -квантами не приводит к значительному изменению A (см. таблицу). Не должны приводить к заметному изменению U_{oc} и вариации I_{sc} и I_0 , поскольку они находятся под знаком логарифма в [3].

Как известно [10], ток термогенерации прямо пропорционален концентрации генерационно-рекомбинационных центров. Измерение величины I_{rev} при практическом постоянстве наклона ВАХ после соответствующих обработок указывает на изменение концентрации центров генерации — рекомбинации (уменьшение величины I_{rev} обусловлено уменьшением концентрации центров генерации — рекомбинации, увеличение I_{rev} — их ростом). Изменение наклона ВАХ при изменении величины I_{rev} после соответствующих обработок указывает как на изменение концентрации центров генерации — рекомбинации, увеличение I_{rev} — их ростом). Изменение наклона ВАХ при изменении величины I_{rev} после соответствующих обработок указывает как на изменение концентрации центров генерации—рекомбинации, так и на изменение механизма токопереноса. Об этом также свидетельствует температурная зависимость I_{rev} при $U_{rev} = 0.4$ V.

Проанализируем возможные механизмы наблюдаемых изменений. При облучении СЭ у-квантами ⁶⁰Со, в результате взаимодействия радиационных дефектов с уже имеющимися в кристалле дефектами, в области p-n-перехода и базы могут создаваться дополнительные электрические и оптические активные центры, играющие роль генерационнорекомбинационных центров, что приводит к уменьшению τ_n и параметров Q и I_F , зависящих от τ_n . Поскольку в исследуемых образцах толщина освещаемого верхнего диффузионного слоя значительно меньше, чем диффузионная длина неосновных носителей $(d_n \ll L_p)$, радиационное уменьшение L_p в этом *n*-слое в соответствии с уравнением (2) не влияет на Q и I_F . С другой стороны, толщина базы $d_n \gg L_n$, и происходящие изменения L_n (см. таблицу) должны приводить к заметным изменениям Q и I_F. Следовательно, введение в полупроводниковую структуру радиационных дефектов значительно сильнее сказывается на τ_n и L_n , чем на L_p , и соответственно изменения Q происходят в основном за счет изменения L_n [11]. Мы полагаем, что именно с этим механизмом связаны основные изменения фотоэлектрических характеристик СЭ в результате облучения у-квантами. При УЗО в результате диффузии радиационных дефектов преимущественно в глубь базы [6] происходит восстановление τ_n и l_n . "Отток" подвижных радиационных дефектов от *p*-*n*-перехода подтверждается также емкостными измерениями, из

Рис. 3. Температурные зависимости обратного тока I_{rev} кремниевого СЭ при напряжении $V_{rev} = 0.4$ V. Нумерация кривых та же, что и на рис. 1.

которых было определено значение эффективной концентрации ионизированных центров в р-области. Из таблицы видно, что у-облучение приводит к росту, а последующие УЗО — к понижению N_{ef}. Заметим при этом, что как для исходных, так и для прошедших соответствующие обработки СЭ изменение обратного тока Irev с ростом обратного напряжения U_{rev} (при $U_{rev} > 0.1 \,\mathrm{V}$) описывается зависимостью, близкой к $I_{rev} \sim \sqrt{U_{rev}}$, что указывает на преимущественно термогенерационную природу обратного тока. В исходном состоянии (рис. 3, кривая 1) наклон температурной зависимости I_{rev} составляет величину ~ 0.71 eV, что указывает на наличие диффузионного и генерационного механизма токопереноса. Наклон температурной зависимости Irev СЭ облученного γ -квантами (рис. 3, кривая 2), понизился и составил величину $\sim 0.55 \, \text{eV}$, характерную для тока термогенерации (т. е. величину опрядка $E_g/2$, где E_g — ширина запрещенной зоны кремния). После УЗО-1 и особенно УЗО-2 наклон температурной зависимости Irev возрастает (рис. 3, кривые 3 и 4) и становится равным $\sim 0.69 \,\text{eV}$. Это свидетельствует

о появлении диффузионной компоненты в механизме токопереноса и уменьшении концентрации генерационно-рекомбинационных центров в области *p*-*n*-перехода.

Таким образом, в отличие от тепловой энергии, поглощаемой равномерно во всем объеме полупроводника, поглощение энергии УЗ волны происходит в основном на дефектах кристаллической решетки, способствуя их перераспределению к равновесному состоянию [3,5,6]. Поскольку облучение γ -квантами создает радиационные дефекты в СЭ, которые более подвижны, то при последующей УЗО акустическая волна взаимодействует преимущественно с последними, способствуя их перераспределению и акустическому отжигу [12]. Приведенные в работе результаты свидетельствуют о том, что УЗО частично восстанавливает совершенство кристаллической структуры СЭ, нарушенное в процессе облучения γ -квантами.

Список литературы

- [1] Вавилов В.С., Ухин Н.А. Радиационные эффекты в полупроводниках и полупроводниковых приборах. М.: Атомиздат, 1965. 310 с.
- [2] *Мамонтов А.П., Чернов И.П.* Эффект малых доз ионизирующего излучения. М.: Энергоатомиздат, 2001. 250 с.
- [3] Браиловский Е.Ю., Здебский А.П., Семенова Г.И. и др. // Письма в ЖТФ. 1987. Т. 21. В. 4. С. 80–84.
- [4] Олих Я.М., Шавлюк Ю.Н. // ФТТ. 1996. Т. 38. В. 11. С. 3365–3371.
- [5] Ермолович И.Б., Миленин В.В., Конакова Р.В. и др. // ФТП. 1997. Т. 31.
 В. 4. С. 503–508.
- [6] Парчинский П.Б., Власов С.И., Муминов Р.А. и др. // Письма в ЖТФ. 2000. Т. 26. В. 10. С. 40–45.
- [7] Guseynov N.A., Askerov Sh.G., Aslanov Sh.S. // SQO. 2005. V. 8. N 3. P. 85-87.
- [8] Абдулаев Г.Б., Искендерзаде З.А. Некоторые вопросы электронно-дырочных переходов. Баку: Элм, 1971. 246 с.
- [9] Бордина Н.М., Головер Т.М. // Гелиотехника. 1977. № 1. С. 11–16.
- [10] Зи С. Физика полупроводниковых приборов. М.: Мир, 1984. Т. 1. 455 с.
- [11] Олих О.Я., Островский И.В. // ФТТ. 2002. Т. 44. № 7. С. 1198–1202.
- [12] Олих Я.М., Карась Н.И. // ФТП. 1996. Т. 30. В. 8. С. 765-767.