¹¹ Термодесорбция самария с окисленного вольфрама

© Е.Ю. Афанасьева

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: afanaseva@ms.ioffe.rssi.ru

Поступило в Редакцию 9 октября 2006 г.

Изучена термодесорбция атомов Sm и молекул SmO после напыления Sm на тонкие (<1 nm) пленки окислов вольфрама, выращенные на поверхности вольфрама. Установлено, что самарий восстанавливает вольфрам из его окислов. Определены значения параметров десорбции Sm и SmO с окисленного W.

PACS: 68.43.Vx

В последние годы интерес к изучению адсорбции редкоземельных металлов значительно возрос. Редкоземельные металлы используются для создания люминофоров, сцинтилляторов, постоянных магнитов и ВТСП-керамики. Но данные о параметрах их адсорбции на поверхности чистых металлов ограничены [1–8], а на поверхности окислов тугоплавких металлов — практически не встречаются. Ранее мы изучали адсорбцию европия на поверхности вольфрама с различной степенью окисления [9]. Работы [10,11] посвящены изучению электронно-стимулированной десорбции атомов европия и самария с поверхности окисления окисления.

В данной работе была исследована адсорбция Sm на поверхности окисленной вольфрамовой ленты методами термодесорбционной спектрометрии (ТДС) и оже-электронной спектроскопии (ОЭС). Экспериментальная установка и методика измерений описаны в работе [12]. Продукты термодесорбции регистрировались импульсным времяпролетным масс-спектрометром. Поток атомов Sm определяли по току ионов Sm⁺, а поток молекул SmO измерялся по току ионов SmO⁺. В качестве оже-спектрометра использовался 120-градусный квазисферический энергоанализатор с задерживающим полем. Количество атомов Sm измерялось по интенсивности $N_{45}O_{23}N_{67}$ оже-линии Sm с энергией 104 eV. Подложками служили текстурированные вольфрамовые ленты с преимущественным выходом грани (100) на поверхность,

63

имеющие размеры $0.01 \times 1.0 \times 30$ mm. Очистка лент от примесей углерода проводилась путем отжига при T = 1600 K в атмосфере кислорода в течение 2 h и последующих кратковременных прогревов до T = 2600 K. Окисление W лент проводилось при температуре T = 1000 K и давлении кислорода $P = 10^{-7}$ Torr в течение 20 min.

Самарий пылился из танталовой трубки, заваренной с обоих концов, в которую непосредственно перед откачкой были помещены куски самария. Для равномерного напыления на W ленту в трубке были сделаны 6 отверстий диаметром 0.3 mm. Трубка нагревалась пропусканием постоянного электрического тока. Давление остаточных газов в приборе не превышало 10⁻¹⁰ Torr.

Термодесорбция Sm *с вольфрама*. С увеличением поверхностной концентрации напыленного на W самария на кривых термодесорбции последовательно появляются три максимума (рис. 1), свидетельствую-

Рис. 1. Термодесорбционные спектры атомов Sm c W для различных значений начальной степени покрытия θ : I = 0.13, 2 = 0.25, 3 = 0.45, 4 = 0.7, 5 = 0.8, 6 = 1.0, 7 = 1.3, 8 = 1.8. Температура адсорбции T = 300 K, скорость нагрева 200 K · s⁻¹.

Рис. 2. Зависимость интенсивности оже-пика Sm от количества напыленного на W самария (в единицах θ). Температура адсорбции T = 300 K.

щие о наличии трех фаз десорбции атомов Sm с грани W(100). Две высокотемпературные фазы десорбции (β_3 и β_2) с ростом степени покрытия насыщаются, а низкотемпературная (β_1) растет неограниченно и связана с десорбцией атомов Sm из многослойной пленки. Аналогичное поведение термодесорбционных спектров атомов Sm с грани W(100) наблюдалось в работе [8], в которой поток атомов Sm был измерен по величине тока поверхностной ионизации. Концентрация атомов Sm, соответствующая насыщению первой высокотемпературной фазы, оказалась равной $N = 5 \cdot 10^{14}$ at/cm². Это значение было использовано нами для абсолютной калибровки потоков aтомов Sm по времени заполнения фазы β_3 .

График зависимости оже-сигнала Sm от концентрации напыленного Sm растет линейно до $N = 8.75 \cdot 10^{14}$ at/cm² (рис. 2), а далее наблюдается излом, который свидетельствует о заполнении монослойного покрытия. Этой концентрации на термодесорбционных спектрах

соответствует заполнение двух высокотемпературных фаз десорбции $(\beta_3 \ u \ \beta_2)$. В работе [7] методом ДМЭ при напылении Sm на W(100) наблюдалось образование двумерной гексагональной структуры при концентрациях больших $N = 1 \cdot 10^{15}$ at/cm²; следует отметить, что концентрация $N = 8.75 \cdot 10^{14}$ at/cm² совпадает с покрытием, соответствующим двумерной гексагональной структуре с параметрами, равными параметрам грани (0001) объемной решетки α -Sm. Следовательно, как и в случае адсорбции Eu на W(100) [9], при заполнении монослойного покрытия Sm образует на вольфраме плотноупакованную гексагональную структуру, не согласованную с подложкой.

Уже начиная с самых малых концентраций Sm наблюдается смещение максимумов термодесорбционных кривых в область низких температур при увеличении степени покрытия. Этот факт указывает на наличие в адслое латеральных взаимодействий. Наличие такого взаимодействия уже при малых значениях покрытия проявляется на графиках зависимостей $\ln((dN/dt)/N)$ от T^{-1} , которые нельзя аппроксимировать прямыми.

Термодесорбция Sm с окисленного вольфрама. Термодесорбционные спектры атомов Sm с окисленного W для различных значений начальной степени покрытия поверхности Sm представлены на рис. 3, а. Количество Sm, десорбирующегося в β_3 фазе значительно уменьшается, а на кривых термодесорбции появляется новая фаза (β_4). Поскольку в высокотемпературной β_3 фазе десорбируются атомы самария, сильно связанные с вольфрамом, образующие с его решеткой согласованную структуру [7], такое уменьшение очевидно после окисления W. Следует отметить, что положение максимумов β_4 фазы на температурной шкале не меняется с ростом покрытия. Энергия активации десорбции Sm в β_4 фазе, определенная из графиков зависимостей $\ln((dN/dt)/N)$ от T^{-1} для $\theta = 0.7$ и $\theta = 0.17$ оказалась равной $E_{des} = (5.4 \pm 0.5)$ eV.

Термодесорбция SmO *после напыления* Sm *на окисленный вольфрам.* Следует отметить, что после напыления Sm на окисленный W при термодесорбции наряду со слетом атомов самария наблюдается десорбция молекул SmO. Причем если до напыления Sm на окисленную W ленту при термодесорбции наблюдался слет окислов вольфрама, то после напыления Sm десорбция окислов W значительно уменьшалась. Следовательно, окисленный вольфрам восстанавливается самарием.

Рис. 3. Термодесорбционные спектры атомов Sm (a) и молекул SmO (b) с окисленного W для различных времен напыления самария *t*, min (в скобках указаны количества десорбирующихся атомов Sm (a) и молекул SmO (b) в единицах θ). *a*: I - 3 (0.17), 2 - 6 (0.7), 3 - 9 (1.95); *b*: I - 4 (0.27), 2 - 9 (0.9). Температура адсорбции T = 300 K, скорость нагрева 200 K · s⁻¹.

SmO десорбируется в одной фазе, положение которой на температурной шкале совпадает с положением новой высокотемпературной фазы десорбции Sm с окисленного W (рис. 3, b). Графики зависимостей $\ln((dN/dt)/N)$ от T^{-1} хорошо аппроксимируются прямыми, из угла наклона которых были определены значения энергии активации десорбции для различных покрытий. Оказалось, что энергия активации десорбции не зависит от покрытия и для $\theta = 0.27$ и $\theta = 0.9$ ее значение составляет $E_{des} = (5.4 \pm 0.5)$ eV. За монослойное покрытие ($\theta = 1$) условно принимается концентрация атомов Sm в монослое на чистом вольфраме. Поскольку десорбция молекул SmO происходит по первому порядку кинетики десорбции, можно предположить, что

восстановление окислов W и образование SmO происходит до начала десорбции.

Одинаковое положение на температурной шкале пика десорбции SmO и высокотемпературного пика десорбции Sm с окисленного W (β_4), а также близкие значения энергий активации десорбции позволяют предположить, что атомы Sm, десорбирующиеся в пике β_4 , являются продуктом диссоциации молекул SmO при ионизации электронным ударом в источнике масс-спектрометра.

Таким образом, атомы самария, адсорбированные на W(100), образуют монослойное покрытие с концентрацией $N = 8.75 \cdot 10^{14}$ at/cm². Это значение близко к концентрации атомов Sm в двумерной гексагональной структуре, соответствующей грани (0001) объемной решетки α -самария. При напылении Sm на окисленный W наблюдается восстановление вольфрама из его окислов: десорбция окислов W заменяется десорбцией окисла SmO, который десорбируется по первому порядку кинетики десорбции с энергией активации $E_{des} = (5.4 \pm 0.5)$ eV.

Работа выполнена при частичной поддержке Федерального агентства по науке и инновациям, госконтракт № 02.434.11.2027.

Список литературы

- [1] Moslemzadeh N., Barrett S.D., Ledien J. // Surf. Sci. 2006. V. 600. P. 559.
- [2] Lohani A., Bhattacharyya V. // J. of Electr. Spectr. and Related Phen. 2002. V. 122. P. 79.
- [3] Ubogyi I., Stepanovskyi S., Kolaczkiewicz J. // Phys. Rev. B. 2000. V. 61. P. 11097.
- [4] Kolaczkiewicz J., Bauer E. // Surf. Sci. 1992. V. 265. P. 39.
- [5] Stenborg A., Bauer E. // Surf. Sci. 1987. V. 189/190. P. 570.
- [6] Kolaczkiewicz J., Bauer E. // Surf. Sci. 1986. V. 175. P. 487.
- [7] Казанцев А.П., Митцев М.А. // ФТТ. 1991. Т. 33. В. 7. С. 1986.
- [8] Логинов М.В., Митцев М.А., Плешков В.А. // ФТТ. 1992. Т. 34. В. 10. С. 3125.
- [9] Агеев В.Н., Афанасьева Е.Ю. // ФТТ. 2001. Т. 43. В. 4. С. 739.
- [10] Агеев В.Н., Кузнецов Ю.А., Потехина Н.Д. // ФТТ. 2001. Т. 43. В. 10. С. 1894.
- [11] Агеев В.Н., Кузнецов Ю.А., Потехина Н.Д. // ФТТ. 2003. Т. 45. В. 5. С. 929.
- [12] Агеев В.Н., Афанасьева Е.Ю., Потехина Н.Д. // ФТТ. 2004. Т. 46. В. 8. С. 1498.