05 Магнитотранспортные параметры двухосно механически напряженных пленок (25 nm)La_{0.67}Ca_{0.33}MnO₃

© Ю.А. Бойков, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: yu.boikov@mail.ioffe.ru

Поступило в Редакцию 23 мая 2007 г.

Исследованы структура, электро- и магнитотранспортные свойства пленок (25 nm)La_{0.6}Ca_{0.33}MnO₃, механически упругонапряженных подложкой (001)LaAlO₃ в процессе их зародышеобразования и роста. Параметры элементарной ячейки манганитных пленок, измеренные в плоскости подложки $a_{\parallel} = 3.790$ Å и вдоль нормали к ее поверхности $a_{\perp} = 3.948$ Å, существенно различались. Индуцированная искажением элементарной ячейки магнитокристаллическая анизотропия так же, как и расслоение фаз, способствовали появлению четких петель гистерезиса на зависимостях электросопротивления пленок от напряженности магнитного поля.

PACS: 73.43.Qt, 73.50.-h

Тонкие слои перовскито-подобных манганитов $La_{1-x}A_xMnO_3$, где A — Ва, Са, Sr,..., перспективны для использования в магниторезистивных сенсорах [1], детекторах ИК-излучения [2], ячейках памяти [3]. Для практического использования нужны однородные по толщине *d*, гомогенные по составу, эпитаксиальные слои манганитов, выращенные на заданных подложках (прежде всего, на кремнии). Электро- и магнитотранспортные параметры пленок $La_{1-x}A_xMnO_3$, так же как и соответствующих объемных кристаллов, зависят от их структуры, от *x* в химической формуле, от величины ионного радиуса двухвалентного щелочно-земельного элемента [1]. Кроме того, на свойства манганитных пленок резкое влияние оказывают двухосные механические напряжения, от типа и величины которых зависят магнитокристаллическая анизотропия и динамика расслоения фаз в их объеме (речь идет о сосуществовании различных электронных фаз в однородном по составу пленочном образце [4,5]). Влияние расслоения фаз на

88

магнитотранспортные параметры манганитных пленок до настоящего времени изучалось лишь фрагментарно [6,7].

В данной работе исследованы структура и электронные параметры пленок La_{0.67}Ca_{0.33}MnO₃ (LCMO), выращенных на подложке со значительным положительным рассогласованием $m \approx 1.8\%$ в параметрах кристаллических решеток ($m = (a_1 - a_s)/a_s$, где a_1 и a_s — параметры кристаллических решеток пленки и подложки соответственно).

Пленки LCMO толщиной d = 25 nm были выращены методом лазерного испарения (KrF, $\lambda = 248$ nm, $\tau = 30$ ns) на подложках (001)LaAlO₃(LAO). Температура подложки в процессе роста манганитного слоя равнялась 790°C, а давление кислорода поддерживалось равным 0.3 mbar; d была меньше "критической" толщины, при которой релаксация механических напряжений в манганитном слое сопровождается изменением параметров его элементарной ячейки [8].

Рентгеновская дифракция (Philips X'pert MRD, $\omega/2\theta$ - и ϕ -сканы, кривые качания) использовалась для получения данных о структуре пленок ЛСМО и определения параметров их элементарной ячейки в плоскости подложки a_{\parallel} и вдоль нормали к ее поверхности a_{\perp} .

Сопротивление *R* выращенных пленок измерялось в конфигурациях van der Pauw в магнитном поле *H* и без него. Направление магнитного поля ($\mu_0 H$ до 5T) было параллельно плоскости подложки, но ортогонально направлению измерительного тока. Электросопротивление ρ пленок рассчитывалось по формуле $\rho = \pi R d / \ln 2$ [9]. На свободной поверхности пленки LCMO методом термического испарения были сформированы четыре серебряных контакта, расположенных на углах квадрата.

Выращенные слои LCMO были четко ориентированы как относительно нормали к плоскости подложки (см. рис. 1), так и относительно выделенного направления в плоскости подложки. Параметр $a_{\perp} = 3.948 \pm 0.005$ Å элементарной ячейки в слое (25 nm)LCMO был существенно болыше параметра ячейки $a_{\parallel} = 3.790 \pm 0.005$ Å. Последний практически совпадал с рассчитанным на основе рентгеновских данных (2 θ для пика (004)LAO) параметром псевдокубической элементарной ячейки $a_{\rm LAO} = 3.789 \pm 0.005$ Å подложки. Нам не удалось выявить какой-либо сложной структуры пиков на рентгеновских сканах, которая могла бы свидетельствовать о релаксации механических напряжений в выращенных манганитных слоях. Эффективный объем $V_{eff} = a_{\perp} \times a_{\parallel}^2 = 56.71$ Å³ элементарной ячейки в пленках

Рис. 1. Рентгеновская дифрактограмма (CuK_{*a*1}, $\omega/2\theta$) для пленки (25 nm)LCMO, полученная, когда падающий и отраженный рентгеновские пучки были в плоскости, нормальной к (001)LAO. Δ — (001)LCMO пик. На вставке показаны температурные зависимости электро- (*1*, *2*) и магнетосопротивления (*3*) для той же пленки. *1* — $\mu_0 H = 0$; *2*, *3* — $\mu_0 H = 1$ T.

(25 nm)LCMO был существенно меньше объема (~ 57.42 Å³ [10]) соответствующей ячейки стехиометрических массивных кристаллов LCMO. Уменьшение V_{eff} твердых растворов La_{1-x}Ca_xMnO₃, как правило, четко коррелирует с увеличением относительной концентрации ионов Mn⁺⁴ в их объеме [5]. Механизмы, ответственные за изменение V_{eff} в упругонапряженных пленках LCMO, рассмотрены в [6].

Максимум на кривых $\rho(T, H = 0)$, полученных для пленок (25 nm)LCMO (см. вставку на рис. 1), наблюдался при $T_m = 215$ K и был сдвинут примерно на 50 K в сторону низких температур относительно

его положения на температурной зависимости электросопротивления для соответствующих объемных кристаллов и пленок, сформированных на подложках с малым *m* [11]. Уменьшение *T_m* для выращенных пленок обусловлено высокой (~ 45%, как следует из данных по зависимости V_{eff} от концентрации ионов ${\rm Mn}^{+4}$ для керамических образцов La_{1-x}Ca_xMnO₃ [5]) относительной концентрацией четырехвалентных ионов марганца в их объеме. При такой концентрации ионов Mn⁺⁴ в объеме пленок наряду с ферромагнитными доменами могут присутствовать (даже при *T* « *T_m*) включения антиферромагнитной СЕ [12] фазы. Магнитное поле способствовало ферромагнитному упорядочению спинов в выращенных пленках (25 nm)LCMO, что проявилось в сдвиге максимума на кривой $\rho(T, \mu_0 H = 1 \text{ T})$ в сторону высоких температур (см. вставку на рис. 1) относительно его положения на зависимости $\rho(T, \mu_0 H = 0)$. Максимум отрицательного магнетосопротивления $MR = [\rho(T, \mu_0 H = 1 \text{ T}) - \rho(T, H = 0)]/\rho(T, H = 0)$ пленок $(25\,\mathrm{nm})$ LCMO наблюдался при $T_{MR} \approx 180\,\mathrm{K}$ (кривая 3 на той же вставке). Полуширина пика на кривой *MR*(*T*) для пленок (25 nm)LCMO превышала 100 К.

На зависимостях электросопротивления пленок (25 nm) LCMO от магнитного поля, полученных при T < T_m/2, наблюдался четкий гистерезис (см. рис. 2). Форма петель гистерезиса на измеренных кривых $\rho(H)$ зависела от температуры и от предельных значений напряженности H_{max} магнитного поля. На рис. 2, *а* приведены зависимости $\rho vs H$, полученные для выращенных пленок при $\mu_0 H_{\text{max}} = 1$ Т. Гистерезис на кривых, приведенных на рис. 2, а, является в значительной степени проявлением магнитокристаллической анизотропии в пленках, индуцированной искажением их элементарных ячеек. Вследствие сильного спинорбитального взаимодействия в манганитах уменьшение эффективного параметра ячейки пленки LCMO в плоскости подложки приводит к тому, что ось легкого намагничивания в их объеме оказывается параллельной нормали к плоскости подложки [13]. Согласно [14], магнитокристаллическая анизотропия в объемных монокристаллах LCMO мала. При *T* < *T_m*/2 основную часть объема выращенных пленок составляли ферромагнитные доменты [7], вектор намагниченности в которых при $\mu_0 H = 1$ T был параллелен направлению магнитного поля. Увеличение электросопротивления пленок с уменьшением $\mu_0 H$ от 1 T до 0 обусловлено: а) усилением рассеяния дырок на магнонах (магнитное поле способствует затуханию спиновых волн), б) появлением в

Рис. 2. Зависимости отношения ρ/ρ_0 от напряженности магнитного поля для пленки (25 nm)LCMO, полученные: a — при T = 4.2 и 85 K в процессе сканирования $\mu_0 H$ в последовательности $1T \rightarrow 0 \rightarrow -1T \rightarrow 0 \rightarrow 1$ T, $\rho_0 \equiv \rho(H = 0)$ (значения температуры указаны на рисунке); b — при сканировании $\mu_0 H$ в последовательности $5T \rightarrow 0 \rightarrow -5T \rightarrow 0 \rightarrow 5$ T.

объеме пленок доменов, вектор намагниченности в которых параллелен нормали к плоскости подложки (вектор спонтанной намагниченности в LCMO ориентируется преимущественно вдоль цепочек Mn–O–Mn с наибольшим расстоянием между ионами марганца и кислорода [12]). Максимум на кривой $\rho(H)$ наблюдался при напряженности магнитного поля H_c , соответствующей наивысшей пространственной разориентации векторов намагниченности в ферромагнитных доменах (H_c примерно соответствует коэрцитивному полю). С ростом напряженности магнитного поля ($H_c < H$) вектор намагниченности в ферромагнитных доментах стремился ориентироваться параллельно направлению магнитного поля, при этом электросопротивление пленок уменьшалось. С понижением температуры в интервале 100–4.2 К H_c возрастало примерно вдвое (см. рис. 2, *a*). Следует отметить, что при $\mu_0 H$, близких к 1 Т, наклоны кривых $\rho(H)$, полученных при росте и уменьшении напряженности магнитного поля, практически совпадали.

При увеличении $\mu_0 H_{\text{max}}$ до 5 Т форма петель гистерезиса на кривых $\rho(H)$ для выращенных пленок определялась не только магнитокристаллической анизотропией, но и зависела от динамики "плавления" в магнитном поле микровключений неферромагнитной (антиферромагнитной) фазы, присутствующих в их объеме. При T = 4.2 К и величине $\mu_0 H$ больше 2T наклоны кривых $\rho(H)$, полученных при росте и уменьшении напряженности магнитного поля, существенно различались (см. рис. 2, *b*). Повышение температуры способствовало интенсификации преобразования микровключений плохо проводящей антиферромагнитной фазы в "металлические" ферромагнитные, поэтому при T = 85 К и величине $\mu_0 H$ больше 1 Т значения производной $d\rho/dH$ при увеличении и уменьшении H практически совпадали (см. рис. 2, *b*). Обратное преобразование фаз (ферромагнитная)—антиферромагнитная) происходило при значениях $\mu_0 H$, близких к нулю, и сопровождалось резким ростом электросопротивления пленок (см. рис. 2, *b*).

В заключение следует отметить, что реакция электросопротивления механически напряженных подложкой пленок (25 nm)LCMO на магнитное поле и изменение температуры зависят от магнитокристаллической анизотропии, появление которой обусловлено искажением кристаллической решетки манганитного слоя, и от расслоения фаз.

Финансовая поддержка данных исследований была частично получена из проекта NMP3-CT-2006-033191 европейской программы FP6.

Список литературы

- Tokura Y. // Colossal Magnetoresistive Oxides / Ed. By Y. Tokura et al. Breach Science Publishers. Amsterdam, The Netherlands, 2000. P. 2.
- [2] Parkin S.S.P., Roche K.P., Samant M.G., Rice P.M., Beyers R.B., Scheuerlein R.E., O'Sullivan E.J., Brown S.L., Bucchigano J., Abraham D.W., Lu Yu, Rooks M., Trouilloud P.L., Wanner R.A., Gallagher W.J. // J. Appl. Phys. 1999. V. 85. N 8. P. 5828.
- [3] Goyal A., Rajeswari M., Shreekala R., Lofland S.E., Bhagat S.M., Boettcher T., Kwon C., Ramesh R., Venkatesan T. // Appl. Phys. Lett. 1997. V. 71. N 17. P. 2535.
- [4] Bibes M., Balcells L.I., Valencia S., Fontcuberta J., Wojcik M., Jedryka E., Nadolski S. // Phys. Rev. Lett. 2001. V. 87. N 6. P. 067210-1.
- [5] Wollan E.O., Koehler W.C. // Phys. Rev. 1955. V. 100. N 2. P. 545.
- [6] Boikov Yu.A., Gunnarsson R., Claeson T. // J. Appl. Phys. 2004. V. 96. N 1. P. 435.
- [7] Valencia S., Balcells, Martinez B., Fontcuberta J. // J. App. Phys. 2003. V. 93. N 10. P. 8059.
- [8] Бойков Ю.А., Клаесон Т., А.Ю. Бойков // ФТТ. 2003. Т. 45. В. 6. С. 1040.
- [9] Kamins T.I. // J. Appl. Phys. 1971. V. 42. N 11. P. 4357.
- [10] Lu C.J., Wang Z.L., Kwon C., Jia Q.X. // J. Appl. Phys. 2000. V. 88. N 7. P. 4032.
- [11] Бойков Ю.А., Данилов В.А. // Письма ЖТФ. 2005. Т. 31. В. 14. Р. 50.
- [12] Goodenough J.B. // Phys. Rev. 1955. V. 100. N 2. P. 564.
- [13] Li Qi, Wang H.S., Hu Y.F., Wertz E. // J. Appl. Phys. 2000. V. 87. N 9. P. 5573.
- [14] Eckstein J.N., Bozovic I., O'Donnell J., Onellion M., Rzchowski M.S. // Appl. Phys. Lett. 1996. V. 69. N 9. P. 1312.