о1;09 Управляемая хаотическая система с запаздыванием

© Э.В. Кальянов

Институт радиотехники и электроники РАН (Фрязинский филиал) E-mail: erast@ms.ire.rssi.ru

Поступило в Редакцию 4 июня 2007 г.

Предложена хаотическая автоколебательная система, основанная на уравнении с запаздыванием, в которой управление колебаниями осуществляется с помощью алгоритма хаотизирующей обратной связи. Приведены результаты численного анализа.

PACS: 05.45.-a

Среди относительно большого разнообразия систем с хаотической динамикой особое мето занимают высокоразмерные автоколебательные системы с запаздыванием, в которых наряду с регулярными режимами реализуются режимы гиперхаоса. Одна из широко известных моделей автоколебательной системы с запаздывающим аргументом описывается нелинейным дифференциально-разностным уравнением первого порядка

$$\delta \, dx/dt + x = F(x_\tau),\tag{1}$$

где $x = x(t), x_{\tau} = x(t - \tau), \tau$ — запаздывание, δ — параметр инерционности, $F(x_{\tau})$ — нелинейная функция.

При аппроксимации нелинейности с помощью выражения

$$F(x_{\tau}) = B x_{\tau} (1 + x_{\tau}^{n})^{-1}, \qquad (2)$$

где *B*, *n* — постоянные коэффициенты, уравнение типа (1) получено в работе [1] для описания регуляции образования кровяных клеток у человека, а при нелинейной характеристике, определяемой синусоидальной функцией

$$F(x_{\tau}) = B \sin(x_{\tau} - \alpha), \qquad (3)$$

где α — постоянная, предложено в работе [2] при описании процессов в кольцевом оптическом резонаторе. Известно использование также

7

и других формул для аппроксимации нелинейности в уравнении (1). Удобным является выражение, отображающее соотношение Рэлея, которое представлено в [3]

$$F(x_{\tau}) = B x_{\tau} \exp(-x_{\tau}^2). \tag{4}$$

Использование в уравнении (1) различных аппроксимаций для нелинейной функции при приблизительно равной крутизне падающего участка не приводит к качественно новым результатам, хотя при численном анализе проявляются количественные различия. При этом по структуре колебаний, как показано в [4,5], несмотря на многомодовость системы (1), ее параметры могут быть восстановлены, и, как следствие, нарушена скрытность передачи информации в случаях использования системы (1) для маскировки. Это продемонстрировано на примерах использования в уравнении (1) соотношений (2) [4] и (3) [5]. На основе результатов этих работ можно ожидать и возможность восстановления параметров уравнения (1) при нелинейности, описываемой выражением (4). Здесь следует заметить, что максимальная крутизна падающего участка характеристики, описываемой соотношением (4), такая же, как и у характеристики, определяемой выражением (2), если n = 4.

Возможность восстановления параметров уравнения (1) по временному ряду динамической переменной делает целесообразным усложнение самой системы, в том числе и с целью управления колебательным процессом. В данной работе рассматривается возможность управления колебаниями модели, основанной на уравнении (1), при использовании алгоритма дополнительной обратной связи. При этом в качестве нелинейности использовано выражение (4).

Для обеспечения дополнительной обратной связи введем в правую часть уравнения (1) функцию f(t), так что с учетом (4), будем иметь

$$\delta \, dx/dt + x = B \, x_\tau \, \exp(-x_\tau^2) + d_0 f(t), \tag{5}$$

где d_0 — коэффициент дополнительной обратной связи.

С помощью функции f(t) можно создать не только внешнее воздействие, но и "самовоздействие", если обеспечить ее зависимость от колебательного процесса x(t). С целью выполнения нерегулярности этого "самовоздействия" зададим функцию f(t) условием

$$f(t) = \begin{array}{c} u_1(t) & \text{при} \quad x < x_{\tau}, \\ u_2(t) & \text{при} \quad x > x_{\tau}, \end{array}$$
(6)

связывая ее с x(t) через переменные $u_1(t)$ и $u_2(t)$, определяемые уравнениями

$$d^2 u_i/dt^2 + (\omega_i/Q)du_i/dt + \omega_i^2 u_i = \omega_i^2 \gamma x, \qquad (7)$$

где $i = 1, 2; \omega_i, Q, \gamma$ — положительные величины.

Соотношения (5)-(7) описывают рассматриваемую математическую модель системы с автокоммутацией, основанную на нелинейном дифференциально-разностном уравнении, когда обеспечивается переменная дополнительная обратная связь. Представляется, что благодаря приведенному усложнению системы с помощью выражений (6), (7) возникают принципиальные трудности ее восстановления по реализации колебательного процесса методом, предложенным в [4,5]. В то же время оказывается возможным управление колебаниями, что иллюстрируется рис. 1-3.

Расчеты проводились методом Рунге-Кутта 4-го порядка при шаге интегрирования, равном 0.02. Неизменяемые параметры имели следующие значения: $\tau = 3, B = 12, Q = 100, \gamma = 0.4$. Начальные условия для переменных x и x_{τ} равны 0.1, а для переменных u_i — нулю.

На рис. 1 приведены бифуркационные диаграммы, показывающие изменение максимальных значений колебательного процесса x(t), обозначенных через [x], в зависимости от параметра, характеризующего инерционность системы. Диаграммы рассчитаны при отсутствии дополнительной обратной связи (a), когда $d_0 = 0$, и при ее наличии (b), когда $d_0 = 0.4$. Видно (*a*), что при $d_0 = 0$ нерегулярный разброс точек, соответствующих максимальным значениям колебательного процесса, существует в относительно узком интервале изменения параметра инерционности: вблизи значения $\delta = \delta_0 = 1.6$. За пределами интервала $\delta \in [1.5; 1.7]$ возбуждаются регулярные колебания. При этом структура генерируемых колебаний изменяется. При $\delta < 1.5$ наблюдаются относительно простые движения: после бифуркации Андронова-Хопфа, возникающей при достижении параметром инерционности величины $\delta \approx 0.3$, при $\delta \approx 0.7$ происходит переход к двухтактным колебаниям, а при $\delta \approx 1.2$ — к трехтактным. Об этом свидетельствует то, что максимальные значения колебательного процесса отображаются соответственно одной, двумя и тремя линиями. При $\delta > 1.7$ реализуются сложные многотактные колебания. При приближении к значению $\delta \approx 2.7$, в соответствии с числом линий, возбуждаются колебания с семиоборотным

Рис. 1. Изменение максимальных значений колебательного процесса в зависимости от параметра инерционности: $a - d_0 = 0$; $b - d_0 = 0.4$.

предельным циклом. Характерно, что во всех случаях значения [x] являются положительными. В связи с этим следует отметить особенность решений уравнения (1): реализации колебаний имеют положительные значения при положительных начальных условиях и отрицательные — при отрицательных их величинах.

Рис. 2. Аттракторы, реализующиеся в случае $\delta = 1$ при $d_0 = 0$ (*a*) и при $d_0 = 0.4$ (*b*).

При введении переменной дополнительной обратной связи происходит существенное изменение колебательного процесса, отображаемого бифуркационной диаграммой, показанной на рис. 1, *а*. При этом оказывается возможным управление колебаниями путем выбора частот филь-

Рис. 3. Спектры мощности при $\delta = 1$ в случаях $d_0 = 0$ (кривая 1) и $d_0 = 0.4$ (кривая 2).

трующих элементов. Хаотизация колебаний, существующих при $\delta < \delta_0$, происходит при выборе величин резонансных частот фильтрующих элементов около значения частоты колебаний, реализующихся при $d_0 = 0$. Так, в случае рис. 1, *b*, когда $\omega_1 = 0.7$, $\omega_2 = 1.1$, нерегулярный разброс точек, отображающих процесс хаотизации колебаний, возникает, если $\delta < \delta_0$. При этом частоты колебаний, возбуждающихся при $d_0 = 0$, находятся между значениями ω_1 и ω_2 . Например, частота генерации при $\delta = 1$ равна $\omega \approx 0.9$. Характерно, что [x] в случае использования дополнительной обратной связи имеют как положительные, так и отрицательные значения.

Можно полагать, что дополнительная обратная связь способствует "раскачке" колебаний, генерируемых на частоте, находящейся между значениями собственных частот фильтров. В соответствии с таким представлением при больших частотах фильтров можно хаотизировать сложные колебания, возбуждающиеся при $\delta > \delta_0$, когда частота генерации увеличивается. Это подтверждается анализом диаграмм, полученных в случаях, когда $\omega_1 = 1$, $\omega_2 = 2$ или $\omega_1 = 2$, $\omega_2 = 3.4$. Однако четкой закономерности не установлено и при варьировании частот фильтрующих элементов возможны непредсказуемые изменения бифуркационных диаграмм. Этот вопрос требует специального изучения и выходит за рамки статьи.

На рис. 2 приведены аттракторы, соответствующие колебаниям, возбуждающимся при $d_0 = 0$ (a) и $d_0 = 0.4$ (b). Аттрактор, представленный на рис. 2, a, рассчитан при параметрах, соответствующих величине $\delta = 1$ на диаграмме рис. 1, a. Видно, что колебательный процесс является двухтактным и все значения x(t) (а соответственно и [x]) положительные. Хаотический аттрактор, показанный на рис. 2, b, рассчитан в интервале времени $t \in [240; 360]$ при величинах параметров, соответствующих значению $\delta = 1$ на диаграмме рис. 1, b. Хаотический аттрактор демонстрирует, что "выбросы" колебаний x(t) (а соответственно и [x]) имеют как положительные, так и отрицательные значения; он отображает хорошее перемешивание фазовых траекторий.

На рис. З иллюстрируется изменение спектра мощности при создании переменной дополнительной обратной связи. Как и аттракторы, показанные на рис. 2, *a*, *b*, спектры мощности рассчитаны при параметрах, соответствующих значениям $\delta = 1$ на диаграммах, представленных на рис. 1, *a* (кривая *I*) и рис. 1, *b* (кривая *2*). Спектр мощности хаотических колебаний (кривая *2*) является сплошным и отображает перемежаемость типа "хаос-хаос".

Приведенная модель и результаты ее численного анализа свидетельствуют об эффективности хаотизации колебаний с помощью предложенного метода, основанного на применении дополнительной обратной связи, обеспечивающей условия автокоммутации колебаний. Такие системы целесообразно использовать в криптографии при шифровании информации методом, описанным в [6]. Представляется также, что при использовании рассмотренной модели в системах скрытой передачи информации (например, в системе, описанной в [7]), также может быть обеспечена более надежная маскировка сигнала.

Работа выполнена при поддержке РФФИ (проект № 07-02-0351).

Список литературы

- [1] Mackey M.C., Glass L. // Science. 1977. V. 197. N 4300. P. 287-289.
- [2] Ikeda K. // Opt. Commun. 1979. V. 30. N 2. P. 257-261.
- [3] Дмитриев А.С., Кислов В.В. Стохастические колебания в радиофизике и электронике. М.: Наука, 1989. Гл. 1. С. 49.

- [4] Пономаренко В.И., Прохоров М.Д. // Письма в ЖТФ. 2002. Т. 28. В. 16. С. 37–43.
- [5] Пономаренко В.И., Прохоров М.Д. // Письма в ЖТФ. 2005. Т. 31. В. 6. С. 73– 78.
- [6] Кальянов Г.Н., Кальянов Э.В. // Письма в ЖТФ. 2005. Т. 31. В. 24. С.45–50.
- [7] Кальянов Э.В. // Письма в ЖТФ. 2001. Т. 27. В. 16. С. 1–9.