¹³ Образование областей с квадратным порядком на поверхности коллоидосом

© Д.С. Рошаль

Южный федеральный университет, Ростов-на-Дону, Россия E-mail: rochal.d@yandex.ru

(Поступила в Редакцию 2 апреля 2013 г.)

Моделируется самосборка коллоидосомы — системы достаточно плотно упакованных коллоидных частиц, расположенных на сферической границе раздела двух фаз. Частицы удерживаются на поверхности сферы поверхностным натяжением и упорядочиваются вследствие взаимодействия, описываемого потенциалом Леннарда—Джонса. Координаты частиц получаются путем условной минимизации свободной энергии системы. Исследуются нарушения среднего гексагонального порядка частиц на поверхности коллоидосомы, не сводимые к топологически обусловленному образованию пентагональных точечных дефектов. Показано, что излишек площади, в среднем приходящейся на одну коллоидную частицу, может приводить к образованию наблюдаемых в коллоидосомах областей с квадратным порядком.

1. Введение

Уже более 100 лет физиков интересуют упорядоченные структуры на поверхности сферы. Еще Дж. Томсон, пытаясь объяснить периодический закон Менделеева, занимался проблемой расположения заряженных частиц на сфере [1]. Он считал, что электроны отталкиваются друг от друга кулоновским потенциалом, находясь на ее поверхности. Данная задача получила название "проблема Томсона", аналитическое решение которой существует лишь для определенного числа частиц. Таммес [2] рассматривал похожую проблему, о том, как на сфере наиболее плотно упаковать диски (сферические шапочки) одного размера. Экспериментальными исследованиями поведения коллоидных частиц на границе раздела фаз начал заниматься Рамсден [3] еще в 1903 году. Он обнаружил, что твердые частицы присоединяются к границам раздела двух фаз. Частицам энергетически выгодно присоединиться к границе раздела масла с водой из-за сил поверхностного натяжения, потому что коэффициент поверхностного натяжения на границе масла и воды больше, чем разность коэффициентов масло-частица и вода-частица [4]. Однако лишь спустя почти 100 лет Динсмор и его соавторы получили "коллоидосомы" [5] — системы плотноупакованных частицы на границе сферической капли масла с масляным раствором, в котором эта капля плавает. Согласно технологии, предложенной создателями коллоидосомы, полученные в масляном растворе коллоидосомы центрифугируют, а затем спекают. В результате получают нанопористую капсулу. Первый успешный синтез коллоидосом привлек внимание ученых, работающих в разных направлениях. Коллоидосомы могут иметь важные практические применения [6-10]. Например, с их помощью можно доставлять лекарства, внедрив их внутрь коллоидосомы. Работа [5] привлекла широкое внимание, о чем свидетельствует около 1000 ссылок на нее.

Причиной написания настоящей работы послужило следующее любопытное наблюдение. Рассмотрим по-

дробнее (рис. 1, a) изображение коллоидосомы, полученной сканирующим электронным микроскопом в работе [5]. Почти повсюду на поверхности коллоидосомы наблюдается гексагональный порядок расположения частиц, однако вверху рисунка хорошо заметна область квадратного порядка, размером три на три частицы, о которой ни слова не сказали авторы [5] и которую мы выделили белым четырехугольником.

Целью данной работы является теоретическое объяснение возможности возникновения областей с квадратным порядком. Наличие подобных областей, очевидно, сказывается на проницаемости нанокапсулы, что в свою очередь влияет на область применимости подобной технологии.

Самосборка структур на поверхности сферы

Самосборка двумерной структуры на неплоской поверхности может быть описана путем условной минимизации свободной энергии *F* системы по отношению к координатам составляющих ее частиц. Налагаемое при минимизации условие состоит в том, что любая из частиц системы должна находиться на рассматриваемой поверхности. Свободная энергия в нашей модели является суммой энергий парных взаимодействий частиц, описываемых потенциалом Леннарда—Джонса

$$F = \varepsilon \sum_{j>i}^{N} \left(\left(\frac{\sigma}{r_{ij}} \right)^{12} - 2 \left(\frac{\sigma}{r_{ij}} \right)^{6} \right), \qquad (1)$$

где r_{ij} — расстояние между частицами в паре, N — количество частиц, σ — расстояние между частицами в паре, соответствующее минимуму потенциала Леннарда—Джонса. Величину σ можно также рассматривать как примерный диаметр частиц.

Рис. 1. Экспериментальная структура коллоидосомы (a) и структура, соответствующая рассмотренной теоретической модели (b). В обоих случаях присутствует область квадратного порядка, выделенная прямоугольником.

В предлагаемой модели возникающая на поверхности сферы структура определяется начальными положениями частиц и двумя параметрами: числом коллоидных частиц N и отношением $\xi = \sigma/R$, где R — радиус сферы. Эффект, который рассматривается в нашей работе, существенно связан с величиной ξ , то есть с конечным размером частиц по отношению к радиусу сферы. Именно поэтому для его описания нами выбран парный потенциал, имеющий минимум и задающий равновесное расстояние между частицами. Чистое отталкивание частиц (соответствующее первому члену потенциала Леннарда-Джонса) приводит к более простому распределению частиц по поверхности сферы. Чем выше показатель степенной функции, задающей потенциал отталкивания, тем лучше решение задачи о минимизации подобного потенциала отталкивания приближается к решению проблемы Таммеса [2]. Поведение системы со свободной энергией (1) является более сложным, и

можно надеяться, что условная минимизация (1) позволит объяснить особенности порядка в рассматриваемой системе.

Будем характеризовать исследуемый порядок эффективным расстоянием *r*_{eff} между соседними частицами, которое мы определяем как

$$r_{\rm eff} = a_0 R \sqrt{\frac{1}{N}},\tag{2}$$

где $a_0 = \sqrt{\frac{8\pi}{\sqrt{3}}} \approx 3.81$. Введенная величина (2) является оценкой снизу среднего расстояния между соседними частицами в сферических структурах. Данная оценка становится точной лишь для плоской гексагональной упаковки с той же поверхностной плотностью частиц $N/4\pi R^2$, что и на сфере. Результаты численного моделирования поведения системы показывают, что если $\sigma < 0.096r_{\rm eff}$, то в потенциале Леннарда–Джонса преобладает притяжение, и частицы не покрывают поверхность сферы полностью, а собираются в несколько кластеров.

Если же $\sigma > 1.05 r_{\rm eff}$, то во взаимодействии Леннарда-Джонса преобладает член, связанный с отталкиванием частиц, которые распределяются по сфере практически равномерно. Если N достаточно велико, то на сфере образовывается гексагональная упаковка с точечными дефектами. Как минимум, по топологическим причинам на поверхности сферы должны присутствовать 12 пятиугольных дефектов [11], каждый из которых несколько уменьшает плотность структуры вокруг себя. Поэтому говорить об образовании гексагональной упаковки можно, если число частиц в системе не менее $N \approx 200-250$. Заметим, что в этой области N все возможные различные (вследствие различного исходного расположения частиц) структуры с одинаковыми значениями N и ζ соответствуют близким минимумам свободной энергии (1). Так, для числа частиц $N \approx 300$ минимумы (1) различаются менее чем на половину процента. С ростом N разница между уровнями минимумов сокращается, но самих минимумов становится все больше и больше.

Рассмотрим теперь промежуточный случай, когда $0.96 < \sigma/r_{\rm eff} < 1.05$, а число частиц N по-прежнему достаточно велико. При таких условиях, как показывает численное моделирование, коллоидные частицы полностью покрывают поверхность сферы, но степень дефектности гексагонального порядка растет с уменьшением отношения $\sigma/r_{\rm eff}$. Более того, излишки площади поверхности сферы, приходящиеся в среднем на одну частицу, могут при минимизации энергии собраться вместе в какой-то области, образовывая дефект с квадратным порядком (ДКП) внутри. Оказывается, что чем меньше σ , тем больше вероятность получить структуру с подобным дефектом, и тем большего размера он может быть. Появление ДКП в данном случае никак не связано с глобальной симметрией структуры, которая практически всегда оказывается тривиальной. С ростом числа частиц в системе излишкам площади собраться вместе в пределах одного дефекта оказывается сложнее, и вероятность получить структуру с подобным дефектом уменьшается.

Например, при равномерном случайном распределении частиц по поверхности сферы и $\sigma=0.96$ структуры коллоидосом с ДКП получаются один раз на 3-5 случаев минимизации свободной энергии (1). Одна из таких структур представлена рис. 1, b. Цвет частицы на рисунке зависит от энергии ее взаимодействия с остальными частицами. Чем светлее частица, тем большей энергией она обладает. Изменение энергии на частицу достигает 30%. Такая "энергетическая" раскраска хорошо выделяет дефекты гексагонального порядка. Черные частицы образуют области с хорошим гексагональным порядком и имеют наименьшую энергию. Частицы других цветов либо образуют дефекты упаковки, либо расположены рядом с ними. ДКП 3 × 4 частицы выделен прямоугольником, принадлежащие дефекту коллоидные частицы имеют наибольшую энергию. Кроме ДКП на рисунке заметны еще несколько пентагональных дефектов.

3. Топология образования дефектов с квадратным порядком

Некоторые закономерности образования дефектного гексагонального порядка на сфере могут быть поняты на основе теоремы Эйлера [11]. Согласно теореме Эйлера для многогранников, топологически эквивалентных сфере,

$$B - P + \Gamma = 2, \tag{3}$$

где B — число вершин, P — число ребер, Γ — число граней. Следуя [11], соединим соседние частицы так, чтобы они всегда были вершинами выпуклого многогранника с треугольными гранями. Так как в таком случае каждую грань ограничивают три ребра, а каждое ребро прилегает к двум граням, то

$$\Gamma = \frac{2}{3} P. \tag{4}$$

Обозначим B_n число вершин, из которых исходит n ребер, а число концов ребер, выходящих из таких вершин, обозначим P_n . Тогда после подстановок получаем

$$6B - \sum_{n} P_n = 12, \tag{5}$$

где $P_n = nB_n$, $B = \sum_n B_n$. После упрощения имеем

$$3B_3 + 2B_4 + B_5 - B_7 - 2B_8 - \ldots = 12.$$
 (6)

Коэффициенты перед B_n обычно называют топологическим зарядом *n*-угольного дефекта [11]. Например, топологический заряд пятиугольного дефекта равен +1, четырехугольного дефекта +2. Сумма топологических зарядов всех дефектов на поверхности сферы равна 12.

Рис. 2. Образование топологических дефектов при получении развертки многогранника. На панели (a) показано образование двух пентагональных дефектов. На панели (b) продемонстрировано, как область, содержащую эти дефекты, можно перестроить в один дефект с квадратным порядком внутри.

Можно продемонстрировать принципы появления топологических дефектов, сопоставив их с секторами, вырезаемыми или вставляемыми в гексагональную решетку для получения развертки замкнутого многогранника. Ясно, что в данную решетку можно вставлять или вырезать из нее сектора, углы которых кратны 60° . Тогда дефект с топологическим зарядом 1 соответствует вырезанному сектору с углом в 60° , 2 — в 120° и так далее. Вставленный сектор в 60° будет соответствовать отрицательному топологическому заряду – 1. В соответствие с предшествующим изложением, алгебраическая сумма углов всех вырезанных из решетки и вставленных в нее секторов для образования замкнутого многогранника должна равняться $12 \times 60^{\circ} = 720^{\circ}$.

С точки зрения построения развертки многогранника можно понять и образование ДКП (см. рис. 2), хотя непосредственная триангуляция подобного дефекта приводит к неоднозначному и не имеющему физического смысла представлению ДКП в виде множества дефектов с топологическими зарядами ± 1 . На рис. 2, *а* показан фрагмент развертки структуры коллоидосомы без ДКП, наложенной на гексагональную решетку. Данный фрагмент развертки содержит два обычных пятиугольных топологических дефекта с зарядом +1. Поэтому сектора, показанные на рисунке серым цветом, должны быть вырезаны, а их противоположные ребра стянуты вместе,

как это показано стрелками. Вектор **AB** соответствует расстоянию между центрами соседних пятиугольных дефектов и в случае, показанном на картинке, выражается через элементарные трансляции решетки a_1 и a_2 следующим образом: $AB = 2a_1 + 3a_2$. Рис. 2, *b* показывает, как можно перестроить область, содержащую 2 данных пятиугольных дефекта, в один дефект с ДКП. Для этой цели параллелограмм ACBD, прорисованный по узлам гексагональной решетки, деформируется в прямоугольник, соответственно порядок в нем из гексагонального превращается в квадратный. Так как из решетки по-прежнему вырезаются два 60-градусных сектора (показанные серым цветом), то топологический заряд такого сложного дефекта равен +2.

4. Заключение

Построена теоретическая модель самосборки коллоидосомы, образуемой коллоидными частицами, расположенными на сферической границе раздела двух фаз. Модель хорошо согласуется с экспериментальными данными, предсказывая необходимые условия появления на поверхности коллоидосом областей с квадратным порядком. Наличие подобных областей и других дефектов, обладающих меньшей плотностью упаковки, чем гексагональная, очевидно будет сказываться на проницаемости нанокапсул, получаемых из коллоидосом [5], что в свою очередь может повлиять на область применимости подобной технологии. В работе также рассматриваются топологические особенности возникающих при самосборке коллоидосомы дефектов. Показано, что один дефект с квадратным порядком внутри может появиться вместо двух обычных пентагональных дефектов с топологическим зарядом +1.

Выражаю большую признательность С.Б. Рошалю за постановку интересной задачи, плодотворные обсуждения и полезные добавления.

Список литературы

- [1] J.J. Thomson. Phil. Mag. 7, 237 (1904).
- [2] P.M.L. Tammes. Recl. Trav. Bot. Neerl. 27, 1 (1930).
- [3] W. Ramsden. Proc. R. Soc. London 72, 156 (1903).
- [4] P.A. Kralchevsky, K. Nagayama. Adv. Colloid Interface Sci. 85, 145 (2000).
- [5] A.D. Dinsmore, Ming F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz. Nature. 298, 1006 (2002).
- [6] E.L. Chaikof. Annu. Rev. Biomed. Eng. 1, 103 (1999).
- [7] R.P. Lanza, R. Langer, J. Vacanti. Principles of Tissue Engineering P. Academic Press, San Diego, CA. (2000). 1306 c.
- [8] L. Leoni, T.A. Desai. IEEE Trans. Biomed. Eng. 48, 1335 (2001).
- [9] R.G. Willaert, G.V. Baron. Rev. Chem. Eng. 12, 5(1996).
- [10] J.K. Park, H.N. Chang. Biotechnol. Adv. 18, 303 (2000).
- [11] M.J. Bowick, D.R. Nelson, A. Travesset. Phys. Rev. B 62, 8738 (2000).