$_{06;07}$ Просветляющие свойства алмазоподобных углеродных пленок, нанесенных на монокристаллы $Cd_{1-x}Zn_x$ Те $(x \sim 0.04)$

© Ф.Ф. Сизов, Н.И. Клюй, А.Н. Лукьянов, Р.К. Савкина, А.Б. Смирнов, А.З. Евменова

Институт физики полупроводников им. В.Е. Лашкарёва НАН Украины E-mail: alex_tenet@isp.kiev.ua

В окончательной редакции 30 октября 2007 г.

Изучены оптические свойства алмазоподобных углеродных пленок (АУП), полученных методом плазмохимического осаждения на монокристаллах $Cd_{1-x}Zn_xTe$ ($x \sim 0.04$). Для интерпретации эллипсометрических данных предложена трехслойная модель преломляющей системы: АУП — полупроводниковая подложка с переходными слоями на границе между пленкой и подложкой. Выявлен просветляющий эффект для созданной преломляющей системы в ИК-области спектра. Показано, что полученная структура устойчива к действию термоциклирования и ультразвуковой обработки.

PACS: 78.66.Hf, 81.05.Dz, 81.05.Uw, 81.40.Tv

Монокристаллы $Cd_{1-x}Zn_x$ Те ($x \sim 0.04$) нашли широкое применение в инфракрасной (ИК) фотоэлектронике в качестве подложечного материала. В частности, речь идет об охлаждаемых оптических приемниках спектрального диапазона ($3 \div 5$) и ($8 \div 12$) μ m на основе эпитаксиальных слоев Cd_xHg_{1-x} Те, поглощение детектируемого излучения в которых происходит со стороны подложки [1]. Наряду с этим кадмий-цинк-теллуровые иммерсионные линзы используются для улучшения эксплуатационных параметров неохлаждаемых ИК-фотодетекторов [2]. И в том и в другом случае значение имеют оптические свойства многослойной полупроводниковой структуры, которой является фотодетектор.

Как известно, уменьшить потери падающего излучения на отражение, особенно в многослойной системе, можно путем нанесения

32

просветляющих покрытий. Для полупроводниковых фотодетекторов оптимальным является покрытие, которое наряду с функцией просветления пассивировало бы поверхность, повышая, таким образом, стабильность, снижая рекомбинационные потери, токи утечки и т.п. Перспективным в этом отношении, на наш взгляд, является использование алмазоподобных углеродных пленок (АУП), которые, обладая высокой твердостью и инертностью поверхности [3], успешно применяются в качестве пассивирующего, защитного и просветляющего покрытия для солнечных элементов на основе моно- и поликристаллического кремния [4,5], успешно конкурируя с традиционными покрытиями [6].

Целесообразность применения АУП в качестве просветляющих покрытий ИК-фотодетекторов определяется прежде всего особенностями их осаждения (низкая температура подложки, простота и дешевизна метода), а также возможностью изменять оптические и механические свойства, варьируя условия осаждения. При этом показатель преломления АУП, в том числе пленок *a*-C:H:N, может изменяться в пределах $n_1 = (1.55-1.95)$ [7,8]. Следовательно, для Cd_{1-x}Zn_xTe, показатель преломления которого для диапазона ($3 \div 16$) μ m изменяется в пределах $n_2 = (2.7-3.15)$ [2], существует возможность оптического просветления в соответствии с соотношениями [9]:

$$n_1 = \sqrt{n_0 n_2} \approx \sqrt{n_2},\tag{1}$$

$$dn_1 = \frac{\lambda}{4},\tag{2}$$

где n_0 — показатель преломления воздуха, который приблизительно равен единице, n_1 — показатель преломления просветляющей пленки, n_2 — показатель преломления материала подложки, λ — длина волны, на которой отражение минимально, d — геометрическая толщина такой пленки.

В данной работе изучалась просветляющая способность пленок a-C:H:N, нанесенных методом плазмохимического осаждения на монокристаллы Cd_{1-x}Zn_xTe ($x \sim 0.04$), а также стабильность параметров полученной таким способом оптической системы к термоциклированию и ультразвуковой обработке (УЗО).

АУП осаждались на полуизолирующие пластины $Cd_{1-x}Zn_x$ Те $(x \sim 0.04)$ размером 1×1 ст и толщиной 1.5 mm. Образцы перед

Рис. 1. Угловая зависимость $\cos \Delta$ и tg ψ для образца № 212 системы a-C:H:N/CdZnTe.

осаждением АУП полировались алмазной пастой (М-1), а затем дополнительно обрабатывались в смеси $H_2O_2 + HF + H_2O = 1:1:1$ [10]. Следует отметить, что только механическая полировка поверхности подложки приводила к неудовлетворительной адгезии диэлектрического покрытия, тогда как механическая полировка с последующим химическим травлением устраняла этот недостаток и позволяла получать систему с хорошей адгезией пленки к подложке.

Осаждение слоя *a*-C:H:N проводилось при мощности высокочастотного разряда (13.56 MHz) W = 250 W и давлении в рабочей камере 100 Pa в течение 40 min (образец № 213) и W = 175 W и давлении 100 Pa в течение 10 min (образец № 211, № 212) [7]. Использовалась смесь газов следующего состава Ar:CH₄:H₂:N₂ = 1:3:5:9. Перед осаждением пленки подложка была обработана в плазме H⁺ в течение 5 min с целью очистки и пассивации поверхности (рабочее давление в камере составляло 25 Pa).

Оптическая система *a*-C:H:N/CdZnTe исследовалась методом эллипсометрии на лазерном ($\lambda = 632.8$ nm) фотоэлектрическом компенсационном нуль-эллипсометре ЛЭФ 3Г-1. Значения эллипсометриче-

		№ 211-1	№ 211-2	Образец № 212-1		Образец № 212-2		No 213
				Исходный	УЗО	Исходный	УЗО	110 215
АУП	$d(\text{\AA})$	1021	1266	1707	1748	3130	3160	8700
	п	1.95	1.9	1.564	1.599	1.79	1.784	1.56
	k	0.0025	0.0023	0.0022	0.002	0.002	0.002	0.0021
1 слой	$d\left(\mathrm{\AA}\right)$	460	472	450	705	705	229	1770
	п	1.5	1.5	0.0103	0.012	0.082	0.067	1.5
	k	0.01	0.01	0.64	1.442	0.300	0.300	0.055
2 слой	$d\left(\mathrm{\AA}\right)$	1000	864	487	662	353	427	547
	п	3.56	3.87	3.87	3.87	3.869	3.87	3.87
	k	0.02	0.02	0.02	0.02	0.02	0.02	0.02
CdZnTe	п	2.3	2.55	2.55	2.55	2.3	2.3	2.55
	k	0.19	0.2	0.2	0.2	0.19	0.19	0.2

Значения оптических параметров исследованных образцов *a*-C:H:N/CdZnTe.

ских углов Δ и ψ определялись экспериментально из многоугловых измерений ($\varphi = 50^{\circ} \div 75^{\circ}$). Типичные для исследованных образцов угловые зависимости $\cos \Delta(\varphi)$ и tg $\psi(\varphi)$ показаны на рис. 1. Для интерпретации эллипсометрических данных была предложена 3-слойная модель преломляющей системы и рассчитаны величины оптических параметров [11]. Значения коэффициента экстинкции k, показателя преломления n и толщины d слоев исследованных образцов приведены в таблице.

Следует отметить, что для осаждения АУП на $Cd_{1-x}Zn_x$ Те $(x \sim 0.04)$ были использованы технологические режимы, отработанные для кремния [5,7,8]. Пленка *a*-C:H:N осаждалась одновременно на контрольные образцы 15 × 15 mm Si и на исследуемые образцы № 211-1, № 212-2 (см. таблицу). Толщины покрытия *a*-C:H:N на контрольных и исследуемых образцах были определены методом профилометрии на приборе Dektak-3030 и составили 0.1 ± 0.05 и 0.3 ± 0.05 μ m как для пленки на Cd_{1-x}Zn_xTe ($x \sim 0.04$), так и для пленки на кремнии.

Рис. 2. Спектры оптического пропускания образца № 213: $I - Cd_{1-x}Zn_xTe(x \sim 0.04)$ без покрытия; 2 — структура *a*-C:H:N/CdZnTe, 3 — спектральное распределение показателя преломления $Cd_{1-x}Zn_xTe(x \sim 0.04)$.

Полученные значения толщин *a*-C:H:N покрытий находятся в соответствии со значениями, рассчитанными на основе эллипсометрических исследований, что подтверждает реальность выбранной нами оптической преломляющей системы [11].

Доля света, отраженного на границе раздела CdZnTe/воздух, определяется по формуле [9]

$$R = \left(\frac{n_2 - n_0}{n_2 + n_0}\right)^2$$
(3)

и составляет $R \approx 21-27\%$ для диапазона $(3 \div 16) \mu m$. Спектральное распределение показателя преломления $Cd_{1-x}Zn_xTe$ $(x \sim 0.04) n_2(\lambda)$ рассчитано на основе данных, приведенных в [12], и показано на рис. 2. Для системы CdZnTe/a-C:H:N/воздух отраженную часть света можно определить по формуле [9]:

$$R = \left(\frac{n_2 n_0 - n_1^2}{n_2 n_0 + n_1^2}\right)^2.$$
 (4)

Она составляет менее 1% для $n_1 = (1.55 - 1.8)$ и увеличивается до 3% при росте n_1 до 1.95.

Однако, как видно из данных таблицы, при нанесении диэлектрического покрытия на полупроводниковую подложку образуется сложная оптическая система a-C:H:N/CdZnTe с двумя переходными слоями, оптические свойства которых отличаются от свойств исходной подложки. Для определения природы этих слоев, а также для обсуждения значений их оптических параметров, безусловно, необходимы дополнительные исследования. В то же время уже сейчас можно сделать некоторые замечания.

Как отмечалось выше, процесс подготовки поверхности пластин CdZnTe к нанесению просветляющего покрытия состоит из последовательности операций (механическая полировка, химическое травление, предварительная обработка в плазме водорода), в результате выполнения которых могут происходить нарушение стехиометрии и деградация свойств приповерхностного слоя обрабатываемого материала [13,14]. Более того, само осаждение АУП сопровождается, повидимому, низкоэнергетической ионной обработкой полупроводниковой подложки, которая может быть причиной образования многослойной системы. Например, обработка плазмой аргона, водорода, а также смеси водорода и метана ртутьсодержащих твердых растворов группы A² Б⁶ (CdHgTe, MnHgTe, ZnHgTe) приводит к формированию инверсного слоя ($p \rightarrow n$ -перехода), состоящего из двух подслоев, отличающихся по электрическим характеристикам [15,16]. При этом природа процессов, происходящих при низкоэнергетической ионной обработке, определяется диффузионным механизмом [15] и технологическими режимами [14]. Так, изменение режима (время/мощность) обработки пластин CdZnTe в плазме кислорода вместо ожидаемого эффекта пассивации приводит к деградации поверхности и изменению сопротивления приповерхностного слоя [14].

Эффективность просветления структуры *a*-C:H:N/CdZnTe для диапазона $(2 \div 16) \mu$ m определялась по спектрам оптического пропускания (рис. 2) на примере образца № 213 (см. таблицу). Пропускание CdZnTe без покрытия (кривая *I*) в среднем составляет около 55%, в то время как нанесение пленки *a*-C:H:N толщиной *d* ~ 0.9 μ m приводит к увеличению пропускания в среднем до 70% (кривая 2). Область максимального просветления (пропускание достигает 80%) находится в коротковолновом диапазоне (3 ÷ 6) μ m, который совпадает

с окном прозрачности атмосферы. Осцилляции в спектрах пропускания системы *a*-C:H:N/CdZnTe на участках вне области максимального просветления (рис. 2, кривая 2, см. стрелки), по-видимому, связаны с интерференцией многократно отраженного света в системе слоев с малым коэффициентом экстинкции. Подобные особенности были обнаружены в спектрах оптического пропускания двухслойных полупроводниковых структур на прозрачных подложках (CdS/CdTe/стекло, CdS/CuInSe₂/стекло, ZnS/ZnSe/стекло) [17].

Следует также отметить, что для синтезированных *a*-C:H:N покрытий характерна достаточно малая величина комплексной части показателя преломления (например, n = 1.56 - i0.0021 для образца № 213, см. таблицу). Такие значения согласуются с результатами работы [18], авторы которой изучали процесс образования и осаждения алмазоподобных углеродных пленок методом эллипсометрии в режиме in situ, и указывают на то, что осаждаемые нами пленки являются полимероподобными.

Термоциклирование (от температуры жидкого азота до комнатной, циклы по 100 раз) и ультразвуковая обработка исследуемых образцов ($f_{\rm US} = 7.5$ MHz, время V3O не менее 60 min) [19] показали стабильность адгезии и оптических характеристик исследуемого диэлектрического покрытия. Значения оптических постоянных многослойной системы, определенные до и после V3O, приведены в таблице. Следует отметить, что чувствительность переходных слоев к V3O (преимущественно влияние на толщину) может указывать на диффузионную природу их образования [15].

Таким образом, в данной работе впервые проведено исследование просветляющих свойств алмазоподобных углеродных пленок a-C:H:N, нанесенных на стандартные подложки для ИК-фотодетекторов на основе Cd_xHg_{1-x}Te-монокристаллы Cd_{1-x}Zn_xTe ($x \sim 0.04$). Область максимального просветления (пропускание достигает 80%) находится в коротковолновом диапазоне ($3 \div 6$) μ m, который совпадает с окном прозрачности атмосферы. Установлено, что оптические параметры покрытий a-C:H:N устойчивы к действию термоциклирования и УЗО, а их качество зависит от исходного состояния поверхности полупроводниковой подложки. Обнаружено, что в процессе плазменно-стимулированного осаждения диэлектрического покрытия на полупроводниковую подложку образуется сложная оптическая система с двумя

Авторы благодарят к.ф.-м.н. А.В. Липтугу и к.ф.-м.н. А.С. Оберемка за проведение измерений оптического пропускания и предоставление данных профилометрии.

Список литературы

- [1] *Rogalski A.* Infrared Photon Detectors. Bellingham. WA: SPIE Optical Engineering Press, chapter 3, 2002.
- [2] Piotrowski J., Rogalski A. // Infrared Physics & Technology. 2004. V. 46. P. 115– 131.
- [3] Robertson J. // Mater. Sci. Eng. 2002. V. R37. P. 129-281.
- [4] Литовченко В.Г. // ФХХТ. 2004. № 1. С. 9–14.
- [5] Клюй Н.И., Литовченко В.Г., Лукьянов А.Н., Неселевская Л.В., Сариков А.В., Дыскин В.Г., Газиев У.Х., Сеттарова З.С., Турсунов М.Н. // ЖТФ. 2006. Т. 76. В. 5. С. 122–126.
- [6] Klyui N.I., Litovchenko V.G., Rogin A.G., Dikusha V.N., Kittler M., Seifert W. // Solar energy materials & Solar Cells. 2002. V. 72. P. 597–603.
- [7] Klyui N.I., Litovchenko V.G., Lukyanov A.N., Neselevska L.V., Osovskiy V.D., Yaroschuk O.V., Dolgov L.A. // Ukr. Phys. J. 2006. V. 51. N 7. P. 710–714.
- [8] Evtukh A.A., Litovchenko V.G., Klyui N.I., Marchenko R.I., Kudzinovski S.Yu. // J. Vac. Sci. Technol. B. 1999. V. 17. N 2. P. 679–683.
- [9] Кизель В.А. Отражение света. М.: Наука, 1973.
- [10] Tseng P.Y., Fu C.B., Kuo M.C., Yang C.S., Huang C.C., Chou W.C., Shih Y.T., Hsin H.Y., Lan S.M., Lan W.H. // Materials Chemistry and Physics. 2002. V. 78. P. 529–533.
- [11] Основы элипсометрии / Под ред. А.В. Ржанова. Новосибирск, 1979. С. 424.
- [12] *Klocek D.* Handbook of infrared optical materials. New York: Dekker editor., 1991.
- [13] Qiang Li, Wanqi Jie // Semiconductor Science & Technology. 2006. V. 21. P. 72–75.
- [14] Mescher M.J. // J. Electron. Mater. 1999. V. 28. P. 700-704.
- [15] Мынбаев К.Д., Иванов-Омский В.И. // ФТП. 2003. Т. 37. В. 10. С. 1153–1178.
- [16] Двуреченский А.В., Ремесник В.Г., Рязанцев И.А., Талипов Н.Х. // ФТП. 1993. Т. 27. С. 168.

- [17] Bhattacharyya D., Chaudhuria S., Pal A.K. // Vacuum. 1995. V. 46. N 3. P. 309–313.
- [18] Suk-Ho Hong, Jorg Winter. // 33rd Conference on Plasma Physics. ECA. Rome, 2006. V. 301. P. O-5.004.
- [19] Savkina R.K., Smirnov A.B., Sizov F.F. // Semiconductor Science & Technology. 2007. V. 22. P. 97–102.