03 Управление аэродинамическим качеством крыловых профилей с помощью импульсного периодического подвода энергии

© С.М. Аульченко, В.П. Замураев, А.П. Калинина

Институт теоретической и прикладной механики CO PAH, Новосибирск E-mail: aultch@itam.nsc.ru

В окончательной редакции 1 ноября 2007 г.

Изучена возможность управления аэродинамическими характеристиками несущих крыловых профилей с помощью локального импульсно-периодического подвода энергии на трансзвуковых режимах полета. На основе численного решения двумерных нестационарных уравнений газовой динамики изучено изменение структуры течения около симметричного профиля в зависимости от величины энергии при подводе ее с нижней стороны профиля для диапазона углов атаки.

PACS: 47.40.Ki, 47.60.+i

В работах авторов [1,2] на основе нелинейных эффектов [3,4] установлено, что на трансзвуковых режимах заданная подъемная сила симметричного профиля под нулевым углом атаки может быть обеспечена с помощью одностороннего подвода энергии при значительно меньшем волновом сопротивлении профиля по сравнению со случаем его обтекания под углами атаки.

В данной рабботе аналогичный подвод энергии осуществляется, с одной стороны, от симметричного профиля, обтекаемого в некотором диапазоне углов атаки, что позволяет получить информацию о зависимости подъемной силы и аэродинамического качества от двух управляющих параметров — угла атаки и подводимой энергии.

В качестве математической модели течения используется система двумерных нестационарных уравнений газовой динамики для идеального газа с показателем адиабаты γ . Для ее численного решения используется конечно-объемная схема, уменьшающая полную вариацию.

62

В рассматриваемой модели импульсный подвод энергии осуществляется мгновенно, при этом изменения плотности газа и его скорости не происходит.

Плотность энергии газа *е* в зоне ее подвода возрастает на величину $\Delta e = E/S$, где *E* — полная подводимая энергия; *S* — площадь зоны. Энергия подводится в тонкой зоне, прилегающей к профилю снизу перед невозмущенным положением замыкающего скачка уплотнения. Начальное распределение параметров соответствует стационарному обтеканию профиля без подвода энергии, а достижение периодического решения устанавливается по средним значениям аэродинамических коэффициентов: сопротивления *C_x*, подъемной силы *C_y*, момента тангажа *C_m*.

Результаты получены для профиля NACA-0012 при обтекании его идеальным газом с показателем адиабаты $\gamma = 1.4$ при числе Маха набегающего потока M = 0.85 в диапазоне углов атаки $\alpha = 0-3^{\circ}$. Подводимая энергия *E* варьировалась в пределах от 0.0001 до 0.0085. Период подвода энергии t = 0.05. Здесь и далее все величины безразмерные (*E* отнесена к $\rho_0 a_{\infty}^2 b^2$, *t* отнесен к b/a_{∞} , *S* отнесена к величине b^2 ; ρ_0 определяется из условия $p_{\infty} = \rho_0 a_{\infty}^2$, p_{∞} и a_{∞} — давление и скорость звука в набегающем потоке, b — длина хорды профиля).

В табл. 1 приведены значения C_x , C_y и аэродинамического качества K_a в зависимости от подводимой энергии E для $\alpha = 0^\circ$ и $\alpha = 1^\circ$. На рис. 1 показаны соответствующие им зависимости C_y от C_x , а также поляра профиля без подвода энергии. В табл. 2 приведены значения C_x , C_y , и K_a в зависимости от угла атаки α при отсутствии подвода энергии. Анализ полученных значений аэродинамических характеристик в табл. 1

Таблица 1.

α , deg	$\Delta E \cdot 10^4$	0	1	2	4	6	8	10	12	20
0	$C_x \cdot 10$	0.4591	0.4669	0.4790	0.4921	0.5932	0.6345	0.6366	0.6369	0.6350
	C_y	0	0.1470	0.2225	0.2890	0.5238	0.5899	0.6000	0.6090	0.6393
	K_a	0	3.148	4.645	5.873	8.830	9.297	9.425	9.562	10.07
1	$C_x \cdot 10$	0.5330	0.5545	0.5813	0.6545	0.7673	0.7892	0.7944	0.7974	0.8040
	C_y	0.2794	0.3373	0.3980	0.5296	0.6817	0.7044	0.7146	0.7236	0.7534
	Ka	5.242	6.083	6.847	8.092	8.884	8.925	8.995	9.074	9.371

Письма в ЖТФ, 2008, том 34, вып. 12

Рис. 1. Зависимость C_y от C_x при подводе энергии для углов атаки $\alpha = 0-3^\circ$, а также поляра профиля без подвода энергии.

и 2 позволяет отметить следующее. Подвод энергии в комбинации с ненулевым углом атаки позволяет получить более высокие значения C_y (0.7 и более), не достижимые в рамках энергетически эффективных [3,4] значений подводимой энергии при $\alpha = 0^{\circ}$, хотя и с некоторым уменьшением качества. Однако K_a при этом все-таки выше, чем при обтекании профиля без подвода энергии при соответствующем угле атаки (рис. 1).

На рис. 2 приведены зависимости аэродинамического качества от подводимой энергии для рассматриваемого диапазона углов атаки

α , deg	1	2	3	4
$C_x \cdot 10$	0.5330	0.7153	0.9556	1.2290
C_y	0.2793	0.5025	0.6753	0.8154
K_a	5.240	7.025	7.066	6.634

Таблица 2.

Письма в ЖТФ, 2008, том 34, вып. 12

Рис. 2. Зависимость аэродинамического качества от подводимой энергии для углов атаки $\alpha = 0 - 3^{\circ}$. K_{max} — максимальное значение аэродинамического качества профиля без подвода энергии.

профиля. Видно, что в отличие от обтекания профиля без подвода энергии, при котором есть максимум K_a при $\alpha = 3^\circ$, подвод энергии обеспечивает монотонный его рост, хотя, конечно, в каждом конкретном варианте необходимо оценивать энергетическую эфективность выбранного варианта управления. Кроме того, можно отметить, что в зависимости от конкретных технических решений, связанных с возможностью подводить лишь весьма небольшую энергию, управление аэродинамическим качеством может осуществляться совместно как углом атаки, так и подводом энергии, что соответствует выбору той или иной кривой на рис. 2 для энергии до 0.0006.

Принципиально механизм такого поведения аэродинамических характеристик при трансзвуковом обтекании профиля при одностороннем подводе энергии был описан в [1,2]. Он связан с перемещением замыкающего скачка уплотнения на нижней поверхности профиля

5 Письма в ЖТФ, 2008, том 34, вып. 12

вверх по потоку и разрушением сверхзвуковой зоны, что приводит к уменьшению волнового сопротивления. На верхней стороне профиля замыкающий скачок уплотнения смещается ближе к задней кромке, что ведет к увеличению волнового сопротивления, однако начиная с некоторого значения *E*, разного для разных углов атаки, замыкающий скачок уплотнения устанавливается на задней кромке, и волновое сопротивление на верхней поверхности либо остается практически постоянным, либо растет существенно медленней, чем подъемная сила.

Таким образом, установлено, что управление аэродинамическим качеством симметричных профилей при трансзвуковых режимах обтекания с помощью подвода энергии и угла атаки может быть эффективным в рассмотренных диапазонах этих параметров.

Список литературы

- [1] Аульченко С.М., Замураев В.П., Калинина А.П. // Письма в ЖТФ. 2006. Т. 32.
 В. 17. С. 81–87.
- [2] Аульченко С.М., Замураев В.П., Калинина А.П. // ПМТФ. 2007. Т. 48. № 6. С. 70–76.
- [3] Аульченко С.М., Замураев В.П., Калинина А.П. // Письма в ЖТФ. 2006. Т. 32.
 В. 1. С. 6–11.
- [4] Аульченко С.М., Замураев В.П., Калинина А.П. // ПМТФ. 2006. Т. 47. № 3. С. 64–71.

Письма в ЖТФ, 2008, том 34, вып. 12