03;04 Ячейка для исследования разряда в потоке газа с вращающимися электродами

© М.-Р.Г. Кишов, Х.И. Магомедгаджиев, К.М.-Р. Кишов, П.Х. Омарова

Дагестанский государственный университет, Maxaчкала E-mail: hasbulat@rambltr.ru

Поступило в Редакцию 27 октября 2009 г.

Показано, что при разумном сочетании продольного магнитного поля, скорости потока и скорости вращения электродов в определенных условиях можно управлять временем запаздывания пробоя и длительностью кратковременного объемного разряда, предшествующего контракции.

Известно, что исключение неоднородностей как вдоль тока разряда, так и в поперечном направлении, а также подавление неустойчивостей на электродах являются основными проблемами при формировании однородного объемного разряда [1].

В данном сообщении приводится описание ячейки для исследования разряда при наличии дополнительных внешних воздействий: прокачки газа, вращения электродов, магнитных полей (см. рисунок). Предполагаем, что, регулируя скорости прокачки газа и вращения электродов, а также напряженность магнитного поля можно управлять длительностью объемного разряда. Поток газа способствует очищению газа от вещества электродов и продуктов плазмохимических реакций, при вращении электродов затрудняется процесс привязки канала к электродам, а продольное магнитное поле способствует стабилизации плазмы вдоль оси разряда.

Прокачка со скоростью $1-100 \text{ m} \cdot \text{s}^{-1}$ осуществлялась с помощью баллона с газом и откачивающей системы, а скорость определялась по расходу газа. Магнитные поля формировались по методике [2] до напряженностей $14.3 \cdot 10^6 \text{ A} \cdot \text{m}^{-1}$. Во внутренней полости соленоида располагалась ячейка. Вращение электродов осуществлялось с помощью миниатюрного электродвигателя M, вставленного в кварцевую

18

1-2 — высоковольтные контакты, 3-4 — эл. контакты для питания эл. дв, 5-6 — вентили для закачки и откачки газа соответственно, 8 — втулка с резьбой, приклеенная к кварцевой трубке, 7 — завинченная на 8 крышка, 9 — металлическое кольцо с резьбой, 10 — держатель анода, 11 и 14 — отверстия для продувки, 12 — уплотнительная резина, 13 — металлическая втулка, 15 — изоляционная муфта, 16 — гофрированная трубка, B1 и B2 — подшипники, A — анод, C — катод, M — электрический двигатель.

трубку. Вращение к электроду C (катод) передавалось с помощью изоляционной муфты и системы подшипников B1 и B2, встроенных в металлическую втулку, позволяющих вращаться электроду C без биений. Электрические контакты 1 и 2 служат для подачи высоковольтного напряжения на катод и анод, а 3 и 4 на миниатюрный электродвигатель.

Таблица зависимости времени формирования пробоя τ (ns) от напряженности продольного магнитного поля H_{\parallel} (*a*), скорости газа v_1 (*b*),

Зависимость τ : a — от магнитного поля, b — от скорости потока, c — от скорости вращения электродов

а	$H_{\parallel}, \mathbf{A} \cdot \mathbf{m}^{-1}$	0	$7.16\cdot 10^6$	$14.3 \cdot 10^6$
	au , s	$3.0\cdot10^{-7}$	$3.0\cdot10^{-7}$	$2.5\cdot 10^{-7}$
b	$v_1 \mathbf{m} \cdot \mathbf{s}^{-1}$	0	10	100
	τ, s	$3.0\cdot10^{-7}$	$8.9\cdot 10^{-7}$	$19.1 \cdot 10^{-7}$
С	v_2 , rps · s ⁻¹	0	33.3	83.3
	τ, s	$1.8\cdot 10^{-7}$	$2.0\cdot 10^{-6}$	$5.1 \cdot 10^{-5}$

2* Письма в ЖТФ, 2010, том 36, вып. 7

скорости вращения электродов v_2 (*c*). Условия: гелий, p = 600 Torr, *d* (межэлектродное расстояние) = 0.35 cm при диаметре электродов 2.5 cm.

Как видно из результатов, при наличии H_{\parallel} усиливается эффект уплотнения заряда и уменьшение τ .

Непосредственные наблюдения лавинно-стримерных переходов, определяющих длительность стадии τ , т. е. время контрактации разряда, является сложной задачей [3,4] и работы в этом направлении в основном носят теоретический характер [5,6]. В рамках имеющихся теоретических моделей принципиальными параметрами, определяющими длительность τ , являются *pd* и *W*, где *W* — перенапряжение. Исходя из этого проанализируем влияние H_{\parallel} на развитие электронной лавины до критической величины, что в основном и определяет длительность τ . Подробные экспериментальные данные приводятся в [7]. Для оценки воспользуемся известным соотношением [8], которое в цилиндрической форме выглядит следующим образом:

$$n_s(\rho, z, t) = (4\pi Dt)^{-3/2} \exp\left\{(\alpha - \eta)ut - \left[\rho^2 + \frac{(z - ut)^2}{4Dt}\right]\right\},$$

где *а* — первый коэффициент Таунсенда, *η* — коэффициент прилипания электронов, и — дрейфовая скорость электронов, D — коэффициент диффузии. Координаты ρ , z, t меняются соответственно вдоль радиуса и оси лавины во времени t. При решении данной задачи эти координаты менялись: ρ — с шагом 10^{-3} cm, считая, что радиус лавины имеет величину $\sim 10^{-1}$ cm; z — с шагом 10^{-1} cm, начиная с катода; t — с шагом $5 \cdot 10^{-9}$ s, начиная с $t = 10^{-7}$ s, что соответствует времени формирования стримерных пробоев. Например, для гелия при $p = 10^5$ Pa, d = 1 cm, *W* = 20% значения величин, входящих в уравнение, следующие: $\eta = 0$ (всегда); $u \approx 3 \cdot 10^6 \,\mathrm{cm} \cdot \mathrm{s}^{-1}$; $D \approx 7 \cdot 10^2 \mathrm{cm}^2 \cdot \mathrm{s}^{-1}$; $\alpha \approx 5 - 6 \,\mathrm{cm}^{-1}$. Для качественных оценок приблизительность этих данных не имеет существенного значения. Оценивалось влияние H_{\parallel} на ρ , z, t на нарастание плотности электронов $n_e \sim 10^{12} \, {\rm cm}^{-3}$, что приблизительно соответствует условию лавинно-стримерного перехода. При $p = 10^5$ Ра, $d = 1 \text{ cm}, W = 20\%, H_{\parallel} = 0$ получаем, что время критического развития лавины $\tau \sim t \approx 2.5 \cdot 10^{-7}$ s; критическое расстояние, пройденное лавиной, $L \sim z \approx 0.6$ cm; критический радиус лавины $r \sim d \approx 0.03$ cm. При $p = 26 \cdot 10^3$ Pa, d = 1 cm, W = 20%, $H_{\parallel} = 0$ имеем соответственно:

Письма в ЖТФ, 2010, том 36, вып. 7

 $8 \cdot 10^{-7}$ s, 1.2 cm, 0.08 cm. В этих же условиях, но при наличии продольного магнитного поля $H_{\parallel} = 16 \cdot 10^6 \text{A} \cdot \text{m}^{-1}$ получаем соответственно для $p = 10^5$ Ра следующие изменения $\tau \approx 2 \cdot 10^{-7}$ s, $r \approx 0.035$ cm, $L \approx 0.02$ cm. При $p = 26 \cdot 10^3$ Ра $\tau \approx 5 \cdot 10^{-7}$ s, $r \approx 0.05$ cm, $L \approx 1$ cm.

Приведенные выше результаты коррелируют с данными (см. таблицу), где оценки проводились по характерным областям неоднородностей. Действительно, в H_{\parallel} из-за уменьшения коэффициента поперечной диффузии могут возникнуть локальные плотности пространственного заряда [9], что и способствует уменьшению τ .

Ясно, что в такого рода исследованиях важнее изучение направления протекания того или иного процесса в зависимости от внешних воздействий, чем скрупулезное изучение отдельной области со своими "координатами". В этом отношении рост τ с ростом v_1 (см. таблицу, b) представляется достаточно убедительным, с ростом v_1 уменьшается скорость накопления пространственного заряда, необходимого для лавинно-стримерного перехода. Это приводит к росту τ . При вращении электродов (см. таблицу, c) рост τ с ростом v_2 также согласуется с общепринятыми представлениями, затрудняется привязка канала разряда к электродам и поэтому должно расти τ .

Основной вывод данной работы заключается в том, что при разумном сочетании H_{\parallel} , v_1 , v_2 в определенных областях pd, рода газа и W можно управлять не только длительностью τ , но и временем существования объемного разряда, которое является следствием пробойных процессов. Разумеется, необходимы целенаправленные исследования в конкретных условиях.

Список литературы

- [1] Велихов Е.П., Голубев В.С., Пашкин С.В. // УФН. 1982. Т. 137. № 1. С. 117.
- [2] Кишов М.-Р.Г. // Электротехника. 1985. № 12. С. 91.
- [3] Королев ЮД., Месяц Г.А. Автоэмиссионные и взрывные процессы в газовом разряде. Новосибирск: Наука, 1982. С. 283.
- [4] Лозанский Э.Д., Фирсов О.Б. Теория искры. М.: Атомиздат, 1975. С. 235.
- [5] Бортник И.М., Кочетков И.И., Ульянов К.Н. // ТВТ. 1982. Т. 20. С. 193.
- [6] Бабич Л.П. // Физика плазмы. 1981. Т. 7. С. 1418.
- [7] Кишов М.-Р.Г. // Физика плазмы. 1980. Т. 6. В. 6. С. 1361.
- [8] Ретер Г. Электронные лавины и пробой в газах. М.: Мир, 1960. С. 198.
- [9] Кишов М.-Р.Г., Акопджанов Н.А. // Изв. вузов. Физика. 1985. № 12. С. 101.

Письма в ЖТФ, 2010, том 36, вып. 7