## 06;08 Прямое наблюдение релаксации проводимости в *у*-облученном кремнии *n*-типа под влиянием импульсов ультразвука

## © Я.М. Олих, Н.Д. Тимочко

Институт физики полупроводников им. В.Е. Лашкарева НАН Украины, Киев E-mail: jaroluk3@ukr.net

## Поступило в Редакцию 4 августа 2010 г.

В облученном и частично отожженном (280°С) *n*-Si-*Fz* в интервале температур T = 110-180 К впервые обнаружено обратимое изменение электропроводимости  $\sigma_{\rm US}$  при импульсном ультразвуковом нагружении (продольные волны: частота 6–10 MHz, интенсивность до 4 · 10<sup>3</sup> Wt · m<sup>-2</sup>, длительность импульса  $10^{-5}-10^{-3}$  s). Установлено, что температурные зависимости акустоиндуцированных изменений  $\sigma_{\rm US}$  (времена нарастания —  $\tau_i$  и спада —  $\tau_d$ ) описываются уравнениями Аррениуса. Из наклона экспериментальных  $\tau_{i,d}(T)$  определены энергии активации соответствующих процессов  $U_i \approx 0.09$  eV,  $U_d \approx 0.13$  eV,  $\tau_i^0 \approx 4 \cdot 10^{-8}$  s,  $\tau_d^0 \approx 10^{-9}$  s. Наблюдаемый эффект интерпретирован как акусто-индуцированный переход метастабильного дефекта между его состояниями.

Многие дефекты в полупроводниках характеризуются би- и метастабильным характером поведения [1–3]. Интерес к метастабильным дефектам (МД) с практической точки зрения обусловлен возможностью управления физическими параметрами полупроводниковых приборов за счет обратимой перестройки подобных комплексов, в частности использования явления бистабильности для создания ячеек памяти нового поколения. Благодаря интенсивным исследованиям с применением электронного парамагнитного резонанса, инфракрасной спектроскопии, нестационарной емкостной спектроскопии и других методик наблюдается значительный прогресс в понимании механизма метастабильности. Было показано, что процессы перестройки атомной конфигурации дефекта и изменение его зарядового состояния часто взаимосвязаны и происходят комплексно. Причиной таких процессов могут быть локаль-

78

ная деформация, изменение температуры, электромагнитное поле, радиация, а также ультразвук (УЗ) [4-6]. При исследовании возможностей практического применения УЗ для управления структурой дефектов в полупроводниковых кристаллах получен целый ряд экспериментальных результатов. Например, обработка УЗ стимулирует распад [4] и образование [5] различных комплексов, перегруппировку дефектов [6,7], формирование наночастиц [8]. Основной механизм акустоиндуцированных (АИ) изменений характеристик материала в бездислокационных кристаллах, по нашему мнению, как раз и связан с метастабильным характером отдельных дефектных комплексов. Однако теория взаимодействия УЗ с МД пока отсутствует. Остается неизученной, в частности, и кинетика АИ-изменений электрофизических и фотоэлектрических параметров полупроводников, которая могла бы помочь уточнить механизм воздействия УЗ. Трудности таких исследований связаны с традиционным использованием волн УЗ в непрерывном режиме [4–10], что делает невозможным наблюдение быстрых переходных процессов. В данной работе впервые использован новый методический подход, который состоит в применении УЗ в форме прямоугольных имульсов, что позволяет наблюдать и исследовать динамические (in situ) изменения характеристик материала в процессе нагружения УЗ.

Исследовались образцы бездислокационного тигельного кремния *п*-типа проводимости *n*-Si-Fz : P; концентрация примесных атомов фосфора, кислорода и углерода составляла:  $N_{\rm P} \approx 4.8 \cdot 10^{19} \, {
m m}^{-3},$  $N_{\rm O} < 5 \cdot 10^{21} \,{\rm m}^{-3}, N_{\rm C} \approx 1.0 \cdot 10^{22} \,{\rm m}^{-3}$  соответственно. Акустоактивные дефекты, чувствительные к действию УЗ, создавались путем радиационного облучения  $\gamma$ -квантами <sup>60</sup>Со-дозой  $\sim 10^8$  rad при комнатной температуре и дальнейшим специальным отжигом образцов до  $T = 280^{\circ}$  С (с шагом 40°С, длительностью 20 min). Предварительная подготовка обусловлена тем, что, как показано ранее [10], эффективность влияния УЗ в отожженных образцах по сравнению с неотожженными увеличивается. Измерения концентрации n<sub>0</sub> и подвижности µ<sub>0</sub> электронов в образцах кремния проводились методом эффекта Холла в температурном диапазоне 100-300 К на стандартных прямоугольных образцах в режиме постоянного тока  $I_0 \sim 10^{-6} \mathrm{A}$  и постоянного магнитного поля B = 0.45 Т. Волна УЗ распространялась вдоль толщины образца 0.45 Т параллельно кристаллографическому направлению (110). Для измерений температурных холловских зависимостей электрофизических параметров использовался азотный криостат, оснащенный акустически-

ми элементами [11]. Такая дополнительная оснастка позволяет реализовать возможность последовательных измерений на одном образце при различном состоянии структуры дефектов как в исходном, так и в акустически возмущенном состоянии соответственно. Генерация УЗ производилась с помощью пьезоэлектрического преобразователя пластины ниобата лития  $(Y + 36^{\circ})$ -среза, на которую подавался синусоидальный сигнал от генератора ВЧ. Как было установлено ранее, проводимость  $\sigma_0 = en_0\mu_0 \gamma$ -облученных образцов n-Si- $F_z$ : Р в интервале 100–200 К определяется глубокими акцепторными уровнями в запрещенной зоне с энергией  $E_c$ -0.23 eV [9]. При нагружении УЗ в непрерывном режиме в диапазоне температур T < 200 К наклон зависимости  $n_{\rm US}(T)$  несколько увеличивается, а концентрация свободных электронов  $n_{\rm US}^{-1}$  уменьшается, т.е. наблюдается АИ-изменение  $\Delta n = n_0 - n_{\rm US}$ . После выключения действия УЗ  $\sigma_{\rm US}$  возвращается в исходное состояние [10].

При исследовании в данной работе кинетики акустопроводимости  $\sigma_{\rm US}$  частично отожженных (280°С) образцов *n*-Si-Fz использовался импульсный режим УЗ (несущая частота  $f_{\rm US} = 5 - 10 \,\rm MHz$ , частота повторения импульсов  $F_i = 400 \, \text{Hz}$ , длительность радиоимпульсов  $\tau_{\rm US} = 10^5 - 10^{-3}\,{
m s}$  и их амплитуда  $V_{\rm US}$  — до 20 V). В этом варианте на цифровой осциллограф, синхронизированный импульсами ВЧ, с потенциальных контактов образца подается измеряемое напряжение  $U_{\sigma}^{\rm US} = kI_0/\sigma_{\rm US}$  (коэффициент k определяется размерами образца). При определенных экспериментальных условиях (см. ниже) в случае проявления эффекта акустопроводимости на фоне постоянной компоненты  $U_{\sigma}$  наблюдается "импульс  $\Delta U_{\sigma}$ ", соответствующий АИ-уменьшению  $\sigma_{\mathrm{US}}$ (см. осциллограмму на рис. 1). Оказалось, что фронты этого "импульса  $\Delta U_{\sigma}$ ", определяющиеся продолжительностью нарастания  $\tau_i$  и спада  $\tau_d$ АИ-изменений  $\sigma_{\rm US}$ , значительно превосходят длительность фронтов импульса ВЧ и при постоянной температуре удовлетворительно описываются экспоненциональными зависимостями (1) и (2) соответственно:

$$\Delta U_{\sigma}^{i}(t) = \Delta U_{\sigma}^{\max} \left( 1 - \exp(-t/\tau_{i}) \right), \tag{1}$$

$$\Delta U_{\sigma}^{d}(t) = \Delta U_{\sigma}^{\max} \exp(-t/\tau_{d}).$$
<sup>(2)</sup>

 $<sup>^1</sup>$  В дальнейшем физические величины, определяемые в условиях отсутствия влияния УЗ, будем обозначать нижним индексом "0", а найденные при нагружении УЗ — индексом "US".



**Рис. 1.** Температурные зависимости времен релаксации: 1 — нарастания  $\tau_i$ ; 2 — спада  $\tau_d$ . Точки — эксперимент, сплошные линии — аппроксимация в соответствии с (3). Вставки: вверху в кругу выделен акустический узел — пьезоэлектрический преобразователь, акустический буфер и образец; внизу осциллограммы "импульса  $\Delta U_{\sigma}$ " на образце и импульса ВЧ на пьезопреобразователе.

Температурные исследования "импульса  $\Delta U_{\sigma}$ ", проведенные при постоянной  $W_{\rm US} \approx 4 \cdot 10^3 {\rm Wt} \cdot {\rm m}^{-2}$  (интенсивность УЗ в импульсе  $W_{\rm US} = c (V_{\rm US})^2$ ; параметр c определяется экспериментально), показали, что зависимости  $\tau_i(T)$  и  $\tau_d(T)$  являются термоактивированными, т. е. описываются в координатах Аррениуса:

$$\tau_{i,d}(T) = \tau_{i,d}^0 \exp(E_{i,d}/kT), \qquad (3)$$

где  $E_{i,d}$  — энергии активации соответствующих процессов. Аппроксимация экспериментальных данных  $t_{i,d}(T)$  в соответствии с (3)



**Рис. 2.** Температурная зависимость коэффициента эффективности воздействия УЗ  $\alpha$ . На вставке амплитудные характеристики относительных изменений концентрации электронов при разных *T*, K: *1* — 128; *2* — 133; *3* — 142; *4* — 163.

(рис. 1) позволила определить значения величин  $E_i \approx 0.09 \pm 0.01 \, \text{eV}$ ,  $E_d \approx 0.13 \pm 0.01 \, \text{eV}$  и  $\tau_i^0 \approx 4 \cdot 10^{-8} \, \text{s}$ ,  $\tau_d^0 \approx 10^{-9} \, \text{s}$ .

В работе исследованы также амплитудные характеристики  $\Delta U_{\sigma} = f(W_{\rm US})$ . Учитывая, что при фиксированной температуре  $U_{\sigma}^{0} = kI_{0}/en_{0}\mu_{0}$  и  $U_{\sigma}^{\rm US} = kI_{0}/en_{\rm US}\mu_{\rm US}$ , рассчитаны относительные АИ-изменения концентрации свободных электронов в образце  $(n_{\rm US}/n_{0}) = (U_{\sigma}^{0}/U_{\sigma}^{\rm US})$ . При расчете, в соответствии с предыдущими нашими экспериментами [9,10], полагалось, что  $\mu_{\rm US}(T) \approx \mu_{0}(T)$ . Действительно, в области температур T > 125 К рассеяние электронов определяется колебаниями решетки, и их подвижность практически не зависит от УЗ. Как видно на рис. 2 (вставка), при всех температурах величина "импульсных" АИ-изменений концентрации электронов проводимости

 $\Delta n_{\rm US} = (n_0 - n_{\rm US})$  прямо пропорциональна  $W_{\rm US}$ :

$$n_{\rm US}/n_0 = 1 - \alpha W_{\rm US},\tag{4}$$

где коэффициент пропорциональности  $\alpha$ , характеризующий эффективность воздействия УЗ, также зависит от температуры (рис. 2). Отметим здесь, что максимальное АИ-изменение  $\Delta n^{\max} \approx 2 \cdot 10^{18} \,\mathrm{m^{-3}}$ достигается при  $T \approx 150 \,\mathrm{K}$ .

В заключение рассмотрения экспериментальных результатов дополнительно отметим следующие установленные факты: 1) АИ-эффекты не связаны с тепловым воздействием — максимальный разогрев УЗ образца при импульсных нагружениях < 0.1 К; 2) влияние магнитного поля на  $\Delta U_{\sigma}$  не обнаружено; 3) новые дефекты в результате нагружений УЗ как в непрерывном, так и в импульсном режимах не образуются (эффекты обратимы), микроструктура образца не изменяется.

Вопрос идентификации акустоактивного центра ( $C_s - C_i$ ,  $P_s - C_i$ , дивакансионные дефекты), обнаруженного в  $\gamma$ -облученных и частично отожженных образцах *n*-Si-*Fz*, остается открытым, и для выяснения механизма АИ-переходов потребуются дальнейшие исследования. Наиболее важным результатом работы является впервые наблюдаемый в режиме реального времени (in situ) процесс акустоиндуцированного обратимого перехода дефектной системы полупроводникового кристалла в возбужденное состояние. Это открывает дополнительные возоможности как для изучения акустоактивных дефектов в полупроводниковых материалах, так и для разработки импульсных акустоуправляемых устройств.

Авторы благодарят В.М. Бабича за предоставленные для исследований образцы кремния.

## Список литературы

- [1] Song L.W., Zhan X.D., Benson B.W. et al. // Phys. Rev. B. Condensed Matter. 1990. V. 42. N 9. P. 5765–5783.
- [2] Вавилов В.С., Киселев В.Ф., Мукашев Б.Н. Дефекты в кремнии. М.: Наука, 1990. 216 с.
- [3] Мукашев Б.Н., Абдуллин Х.А., Горелкинский Ю.В. // УФН. 2000. Т. 170.
   В. 2. С. 143–155.
- [4] Подолян А.А., Хиврич В.И. // Письма в ЖТФ. 2005. Т. 31. В. 10. С. 11–16.
- 6\* Письма в ЖТФ, 2011, том 37, вып. 1

- [5] Парчинский П.Б., Власов С.И., Лигай Л.Г. // ФТП. 2006. Т. 40. В. 7. С. 829– 832.
- [6] Romanyuk B., Kladko V., Olikh Ya. et al. // Mater. Sci. in Semicond. Processing. 2005. V. 8. N 4. P. 171–175.
- [7] Олих О.Я. // ФТП. 2009. Т. 43. В. 6. С. 774–779.
- [8] Romanyuk A., Melnik V., Olikh Ya. et al. // J. Luminescence. 2010. V. 130. N 1. P. 87–91.
- [9] Олих Я.М., Тимочко Н.Д., Долголенко А.П. // Письма в ЖТФ. 2006. Т. 32.
   В. 13. С. 67–73.
- [10] Babych V.M., Olikh Ja.M., Tymochko M.D. // SPQEO. 2009. V. 12. N 4. P. 375– 378.
- [11] Олих Я.М., Савкина Р.К. // УФЖ. 1997. Т. 42. № 11-12. С. 1385-1389.