05,02

Ферромагнитый резонанс в геликоидальном магнетике Cr_{1/3}NbS₂

© Ф.Б. Мушенок

Институт проблем химической физики РАН, Черноголовка, Московская обл., Россия

E-mail: mushenokf@yandex.ru

(Поступила в Редакцию 14 мая 2013 г.)

В геликоидальном магнетике Cr_{1/3}NbS₂ методом ферромагнитного резонанса исследованы высокочастотные спиновые возбуждения. Разделены вклады однородной и голдстоуновской мод спиновой прецессии. Показано, что резонансное поле однородной моды определяется одноосной магнитокристаллической анизотропией. Конечные значения энергии и резонансного поля голдстоуновской моды обусловлены магнитокристаллической анизотропией шестого порядка в базальной плоскости.

Работа выполнена при финансовой поддержке гранта РФФИ № 12-02-31372.

1. Введение

Магнитоупорядоченные материалы с модулированной магнитной структурой являются объектом пристального изучения [1]. За время исследования этих соединений было обнаружено множество новых физических явлений, таких как скирмионная решетка [2], топологический эффект Холла [3], нелинейные спиновые возбуждения [4,5] и т.д. Зависимость спектра спиновых возбуждений модулированной магнитной структуры от ее типа и параметров является одним из важнейших вопросов. Ответ на этот вопрос позволит лучше понять статические магнитные и электротранспортные свойства материалов с модулированными магнитными структурами. В настоящее время наиболее изученными являются кубические гелимагнетики MnSi, FeGe, $Mn_{1-x}Fe_xSi$, $Fe_{1-x}Co_xSi$ [6–8]. Изучение высокочастотных магнитных свойств этих соединений позволило обнаружить новые типы спиновых возбуждений (такие как "дышашие моды" скирмионов [9]), отсутствующие в соразмерных структурах.

В настоящей работе рассмотрены спиновые возбуждения другого класса модулированных магнитных структур — простой ферромагнитной спирали. Целью работы является исследование высокочастотных спиновых возбуждений в геликоидальном магнетике Cr_{1/3}NbS₂ и установление роли магнитокристаллической анизотропии в формировании спектра спиновых возбуждений.

Кристаллическая структура $Cr_{1/3}NbS_2$ (пространственная группа $P6_322$) образована чередующимися слоями ионов ниобия, которые расположены в плоскости *ab* и разделены двумя слоями ионов серы [10]. Интеркалированные ионы хрома Cr^{3+} занимают упорядоченные позиции между слоями серы, образуя кристаллическую сверхструктуру $\sqrt{3} \times \sqrt{3}$. Ниже температуры Кюри $T_c = 128$ К конкуренция симметричного и антисимметричного обменных взаимодействий, а также влияние одноосной магнитной анизотропии типа "легкая плоскость" приводят к образованию геликоидальной магнитной структуры. В такой структуре магнитные

моменты ионов Cr^{3+} (спин S = 3/2), принадлежащих одному слою, упорядочены ферромагнитно и лежат в плоскости аb. При перемещении вдоль кристаллографической оси с ориентация намагниченности отдельных слоев изменяется по закону $\varphi = Q_0 z$, где φ — угол между вектором намагниченности и осью а. Волновой вектор магнитной структуры $Q_0 = 0.013 \,\text{\AA}^{-1}$ (при H=0) соответствует ~ 40 периодам кристаллической решетки [11,12]. Приложение магнитного поля перпендикулярно оси c (и вектору **Q**) приводит к образованию магнитной солитонной решетки (МСР), состоящей из участков соразмерной фазы ($\phi = 2\pi n$, где n — целое число), разделенных солитонами — участками скачкообразного изменения угла ϕ на 2π . Такая структура описывается солитонным решением уравнения синус-Гордона

$$\cos[\varphi(z)/2] = \operatorname{sn}(2Kz/L), \tag{1}$$

где $L = 8KE/\pi Q_0$ — период МСР (расстояние между двумя соседними солитонами), K, E — полные эллиптические интегралы первого и второго рода с эллиптическим модулем $\kappa \in [0; 1]$. Величина эллиптического модуля определяется условием $\sqrt{H/H_c} = \kappa/E(\kappa)$. Период L логарифмически возрастает с увеличением магнитного поля H, и при некотором критическом значении H_c МСР переходит в соразмерную ферромагнитную структуру $(L \to \infty)$. Для монокристаллических образцов Cr_{1/3}NbS₂ критическое поле H_c составляет ~ 1.3 kOe [10].

2. Методика эксперимента

Поликристаллический образец $Cr_{1/3}NbS_2$ был получен путем спекания смеси исходных компонентов в вакууме при 800°С [10]. Непрозрачные монокристаллы $Cr_{1/3}NbS_2$ с естественной огранкой были выращены методом химического транспорта в атмосфере йода при градиенте температур $T = 950-800^{\circ}$ С. Кристаллическая структура полученных кристаллов определена с помощью монокристаллического рентгеновского дифрактометра Р4 BRUKER. Параметры элементарной ячейки

 $(a = b = 5.73 \text{ Å}, c = 12.05 \text{ Å}, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ})$ хорошо согласуются с результатами работ других авторов [10,11].

Для получения температурных и полевых зависимостей магнитного момента образца был использован СКВИД-магнитометр MPMS 5XL с диапазоном изменения магнитного поля $H = 0-5 \,\mathrm{T}$ и диапазоном изменения температуры T = 2 - 300 К. Температурные и ориентационные зависимости спектров электронного спинового резонанса получены с помощью ЭПР-спектрометра Bruker EMX Х-диапазона (~ 9.5 GHz) с прямоугольным резонатором ТЕ102 и частотой модуляции магнитного поля 100 kHz. Спектры ЭПР записывались в виде зависимости первой производной мнимой части магнитной восприимчивости по магнитному полю $d\chi''/dH$ от величины магнитного поля, варьировавшегося от 0 до 20 kOe. Температура образца поддерживалась с помощью криосистемы Oxford Intelligent 503 в диапазоне $T = 4 - 300 \,\mathrm{K}$ с точностью $\pm 0.1 \, \text{K}$.

Экспериментальные результаты и обсуждение

В диапазоне T = 300-150 К температурная зависимость намагниченности описывается законом Кюри– Вейсса. С понижением температуры ниже 130 К происходит резкое возрастание намагниченности, что обусловлено переходом в магнитоупорядоченное состояние. При ориентации магнитного поля перпендикулярно кристаллографической оси c ($\mathbf{H} \perp \mathbf{c}$) намагниченность Mдостигает значения 23 emu/g при T = 2 К, что близко к расчетному значению намагниченности насыщения для ионов Cr^{3+} со спином S = 3/2 (рис. 1). В области низких температур T = 2-40 К зависимость M(T) хорошо описывается законом Блоха

$$M_s(T) = M_{s0}[1 - BT^{3/2}], (2)$$

где M_s — намагниченность насыщения, M_{s0} — намагниченность насыщения при $T \rightarrow 0$, $B = 0.00047 \,\mathrm{K}^{2/3}$ — константа, зависящая от типа кристаллической структуры и обменного взаимодействия. При ориентации $\mathbf{H} \parallel \mathbf{c}$ намагниченность M значительно меньше, чем в случае ориентации $\mathbf{H} \perp \mathbf{c}$, и слабо зависит от температуры. Аналогичные зависимости M(T) были получены ранее в работах [10,11]. Это подтверждает, что полученное соединение действительно является гелимагнетиком с анизотропией "легкая плоскость".

Спектр ферромагнитного резонанса (ФМР) в ориентации $\mathbf{H} \perp \mathbf{c}, \mathbf{h} \perp \mathbf{Q}$ (где \mathbf{h} — вектор напряженности микроволнового магнитного поля) при T = 5 К состоит из двух линий: интенсивной линии I в области ~ 500 Ос и слабой линии II в области ~ 50 Ос (рис. 2). Резонансное поле линии I $H_{\text{res,I}}$ практически не зависит от температуры при T = 5-50 К и плавно возрастает до ~ 3.2 kOe в диапазоне T = 50-130 К (рис. 3). Выше 150 К линия I не наблюдается.

Рис. 1. Температурные зависимости намагниченности монокристалла $Cr_{1/3}NbS_2$ в ориентациях **H** \perp **c** и **H** $\parallel c$, H = 10 kOe.

Рис. 2. Спектры ферромагнитного резонанса монокристалла $Cr_{1/3}NbS_2$ при различных температурах, $\mathbf{H} \perp \mathbf{c}$, $\mathbf{h} \perp \mathbf{c} \perp \mathbf{Q}$. Спектры эквидистантно сдвинуты вдоль оси ординат.

Линия II с ростом температуры смещается в область меньших магнитных полей, ее амплитуда убывает, и при $T \sim 70 \, {\rm K}$ эта линия становится неразличимой (рис. 3, за резонансное поле *H*_{res,II} принималось положение максимума этой линии). На магнитной фазовой диаграмме монокристаллов $Cr_{1/3}NbS_2$ в этом диапазоне полей отсутствуют аномалии или фазовые переходы [13]. Поэтому линия II не может соответствовать нерезонансному изменению поглощаемой мощности в результате фазовых переходов, индуцированных магнитным полем. Следовательно, эта линия является резонансным откликом монокристаллов Cr_{1/3}NbS₂. Отметим, что нами были получены сходные спектры ФМР на нескольких кристаллах Cr_{1/3}NbS₂. Это позволяет также исключить соответствие линии II случайным примесям или аппаратным артефактам. В ориентации Н || с при температурах $T = 5 - 130 \,\mathrm{K}$ в диапазоне $H = 0 - 20 \,\mathrm{kOe}$

ний I и II. $\mathbf{H} \perp \mathbf{c}$, $\mathbf{h} \perp \mathbf{c} \perp \mathbf{Q}$. Сплошной линией показана расчетная зависимость резонансного поля однородной моды. Штриховой линией показано примерное значение критического поля H_c [11].

спектры ФМР не содержали линий, превосходящих фон спектрометра.

Рассмотрим возможные источники линий I и II. Обе линии наблюдаются в полях, меньших, чем критическое поле $H_c \sim 1.3$ kOe. Следовательно, они соответствуют спиновым возбуждениям на хиральной геликоидальной структуре или магнитной солитонной решетке. Дисперсия спиновых возбуждений в таких структурах описывается выражением [14–16]

$$\hbar\omega_q = 2S$$

$$\times \sqrt{[J(\mathbf{Q}) - 0.5J(\mathbf{Q} + \mathbf{q}) - 0.5J(\mathbf{Q} - \mathbf{q})][J(\mathbf{Q}) - J(\mathbf{q}) + D]}$$
(3)

где q — волновой вектор спиновых возбуждений в лабораторной системе координат, Q — волновой вектор магнитной структуры, S = 3/2 — спин ионов Cr^{3+} , J(x) — соответствующие компоненты Фурьепреобразования обменного взаимодействия, D — параметр магнитной анизотропии в базальной плоскости. В общем случае высокочастотное магнитное поле **h** может приводить к возбуждению трех различных мод с волновыми векторами $q = 0, \pm Q$ [16]. Согласно уравнению (3), энергия $\hbar\omega_0$ однородной моды (q = 0) равна нулю. Конечное значение $\hbar\omega_0$, необходимое для обнаружения этой моды методом ФМР, может быть индуцировано внешним магнитным полем (как и в случае однородного ФМР). Соответственно резонансное поле H_{res} однородной моды в гелимагнетиках определяется выражением [15]

$$\left(\frac{\omega}{\gamma}\right)^2 = H_{\rm res}\left(H_{\rm res} + \frac{2K_1}{M_s} + 4\pi M_s\right),\tag{4}$$

где $\omega = 2\pi v$, v = 9.5 GHz, γ — гиромагнитное отношение, $M_s = 105$ emu/cm³. Константа одноосной магнитокристаллической анизотропии K_1 равна $1.5 \cdot 10^6$ erg/cm³ при T = 5-30 К и линейно убывает с повышением температуры выше 30 К [11]. На основе уравнения (4) и зависимости $K_1(T)$ была рассчитана температурная зависимость резонансного поля однородной моды (сплошная линия на рис. 3), которая в диапазоне T = 5-70 К с хорошей точностью совпадает с экспериментальной зависимостью $H_{\text{res,I}}(T)$. Следовательно, линия I соответствует однородному резонансу ($\mathbf{q} = 0$) на геликоидальной магнитной структуре, а ее резонансное поле определяется одноосной магнитокристаллической анизотропией K_1 . Отметим, что, согласно уравнению (4), с уменьшением магнитокристаллической анизотропии резонансное поле стремится к значению ω/γ (~ 3.5 kOe для X-диапазона).

Теперь рассмотрим линию II. Кардинальное различие зависимостей $H_{\text{res,I}}(T)$ и $H_{\text{res,II}}(T)$ указывает на принадлежность линий I и II различным модам спиновых возбуждений. Если линия I соответствует моде $\mathbf{q} = 0$, то линия II может отвечать моде $\mathbf{q} = \pm \mathbf{Q}$. Резонансное поле линии II при T = 5 К равно 35 Ое, что соответствует эллиптическому модулю $\kappa \sim 6 \cdot 10^{-4}$ и изменению периода L модулированной магнитной структуры менее чем на 0.01%. При столь малом изменении периода магнитная структура может быть рассмотрена как коническая с углом раствора конуса $\theta = \pi/2$. При $J(\mathbf{q}) = J(-\mathbf{q})$ и в пределе нулевого магнитного поля энергия возбуждений $\mathbf{q} = \pm \mathbf{Q}$ равна [15,16]

$$\hbar\omega_{\pm Q} = S\sqrt{2D\{2J(\mathbf{Q}) - J(0) - J(2\mathbf{Q})\}}.$$
 (5)

В отсутствие анизотропии D вектор локальной намагниченности осциллирует в направлении, перпендикулярном вектору Q. Эта мода колебаний является голдстоуновской, и ее энергия $\hbar \omega_{\pm Q}$ равна нулю [17]. Приложение внешнего магнитного поля практически не влияет на энергию $\hbar \omega_{\pm Q}$ [15] (в отличие от однородной моды, для которой $\hbar\omega_0 \sim H$). Поэтому мода $\mathbf{q} = \pm \mathbf{Q}$ не может быть обнаружена методом ФМР. Одноосная анизотропия типа "легкая плоскость" также не влияет на энергию $\hbar \omega_{\pm 0}$ [17]. Ситуация существенно меняется при наличии анизотропии *D* в базальной плоскости. В этом случае траектория прецессии вектора намагниченности становится эллиптической. Наличие компоненты, параллельной Q, приводит к конечному значению $\hbar\omega_{\pm 0}$, что делает возможным обнаружение этой моды методом ФМР. Отметим, что с убыванием анизотропии D резонансное поле стремится не к ω/γ , а к нулю. Это объясняет аномальную зависимость $H_{\text{res,II}}(T)$. Рост температуры приводит к уменьшению магнитокристаллической анизотропии К₆ шестого порядка в базальной плоскости, энергии $\hbar\omega_{\pm Q}$ и, следовательно, резонансного поля H_{res,II}. Отметим, что линии ФМР с аналогичными зависимостями $H_{\rm res}(T)$, соответствующие возбуждениям $\mathbf{q} = \pm \mathbf{Q}$, были обнаружены ранее в кубических гелимагнетиках MnSi [18], FeGe [19] и Fe0.8Co0.2Si [20]. Таким образом, наиболее вероятным источником линии II являются спиновые возбуждения с волновым вектором $\mathbf{q} = \pm \mathbf{Q}$.

Рис. 4. Спектры ферромагнитного резонанса монокристалла $Cr_{1/3}NbS_2$ в ориентациях $\mathbf{h} \perp \mathbf{Q}$ и $\mathbf{h} \parallel \mathbf{Q}$, T = 5 K. На вставке показана ориентация кристаллов и вектора модуляции \mathbf{Q} относительно постоянного \mathbf{H} и переменного \mathbf{h} магнитных полей.

Для подтверждения этого предположения был использован следующий факт. Мода $\mathbf{q} = \pm \mathbf{Q}$ возбуждается микроволновым полем \mathbf{h} только в ориентации $\mathbf{h} \perp \mathbf{Q}$ не возбуждаются в ориентации h || Q [15,16]. Нами было проведено сравнение спектров ФМР в ориентациях $\mathbf{h} \perp \mathbf{Q}$ (описанных выше) и $\mathbf{h} \parallel \mathbf{Q}$ (рис. 4). При этом постоянное магнитное поле Н всегда было перпендикулярно вектору Q (см. вставку на рис. 4). Было установлено, что изменение ориентации не влияет на резонансное поле линии І. Этого и следовало ожидать для моды $\mathbf{q} = 0$, резонансное поле которой определяется только параметрами анизотропии и не зависит от взаимной ориентации векторов h и Q. В то же время с изменением ориентации происходит увеличение асимметрии линии I и уменьшение ее ширины "от пика до пика" в ~ 1.5 раза. Это может быть обусловлено анизотропией параметров спиновой релаксации, определяющих форму и ширину линии ФМР. Линия II с изменением взаимной ориентации векторов h и Q практически исчезает. Это полностью совпадает с ожидаемой ориентационной зависимостью и подтверждает предположение, что линия II соответствует моде $\mathbf{q} = \pm \mathbf{Q}$. Таким образом, температурная зависимость резонансного поля линии II $H_{\text{res,II}}(T)$, а также зависимость ее интенсивности от взаимной ориентации векторов h и Q указывают на то, что эта линия соответствует спиновым возбуждениям с волновыми векторами $\mathbf{q} = \pm \mathbf{Q}$.

4. Заключение

Методом ферромагнитного резонанса исследованы высокочастотные спиновые возбуждения в хиральном гелимагнетике $Cr_{1/3}NbS_2$. В геликоидальной фазе обнаружены две линии ФМР с различной температурной зависимостью резонансного поля. Установлено, что ли-

ния I соответствует однородному резонансу на геликоидальной структуре (волновой вектор $\mathbf{q} = 0$). Резонансное поле этой линии определяется одноосной магнитокристаллической анизотропией. Линия II соответствует возбуждению голдстоуновской моды с волновым вектором $\mathbf{q} = \pm \mathbf{Q}$. Конечное значение энергии моды $\mathbf{q} = \pm \mathbf{Q}$ обусловлено магнитокристаллической анизотропией шестого порядка в базальной плоскости. Впервые экспериментально продемонстрировано, что эффективное возбуждение моды $\mathbf{q} = \pm \mathbf{Q}$ происходит только в том случае, когда вектор микроволнового магнитного поля **h** перпендикулярен волновому вектору магнитной структуры **Q**.

Автор выражает благодарность М. Farle за поддержку и проявленный интерес к работе, Н.С. Ованесяну за плодотворные обсуждения и Г.В. Шилову за проведение рентгеноструктурного анализа.

Список литературы

- [1] Ю.А. Изюмов. УФН 144, 439 (1984).
- [2] X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura. Nature 465, 901 (2010).
- [3] M. Lee, W. Kang, Y. Onose, Y. Tokura, N.P. Ong. Phys. Rev. Lett. 102, 186 601 (2009).
- [4] Ф.Б. Мушенок, М.В. Кирман, О.В. Коплак, Р.Б. Моргунов. ФТТ 54, 1281 (2012).
- [5] R.B. Morgunov, F.B. Mushenok, O. Kazakova. Phys. Rev. B 82, 134 439 (2010).
- [6] U. Rößler, A.A. Leonov, A.N. Bogdanov. J. Phys.: Conf. Ser. 303, 012105 (2011).
- [7] С.М. Стишов, А.Е. Петрова. УФН 181, 1157 (2011).
- [8] H. Wilhelm, M. Baenitz, M. Schmidt, U.K. Rößler, A.A. Leonov, A.N. Bogdanov. Phys. Rev. Lett. 107, 127 203 (2011).
- [9] Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, Y. Tokura. Phys. Rev. Lett. 109, 037 603 (2012).
- [10] S.S.P. Parkin, R.H. Friend. Phil. Mag. B 41, 65 (1980).
- [11] T. Miyadai, K. Kikuchi, H. Kondo, S. Sakka, M. Arai, Y. Ishikawa. J. Phys. Soc. Jpn. 52, 1394 (1983).
- [12] Y. Togawa, T. Koyama, K. Takayanagi, S. Mori, Y. Kousaka, J. Akimitsu, S. Nishihara, K. Inoue, A.S. Ovchinnikov, J. Kishine. Phys. Rev. Lett. **108**, 107 202 (2012).
- [13] N.J. Ghimire, M.A. McGuire, D.S. Parker, B. Sipos, S. Tang, J.-Q. Yan, B.C. Sales, D. Mandrus. Phys. Rev. B 87, 104403 (2013).
- [14] Ю.А. Изюмов. Дифракция нейтронов на длиннопериодических структурах. Энергоатомиздат, М. (1987). 200 с.
- [15] B.R. Cooper, R.J. Elliot. Phys. Rev. 131, 1043 (1963).
- [16] T. Nagamiya. Solid state physics / Eds F. Seitz, D. Turnbull, H. Ehrenreich. Academic Press, N. Y. (1967). V. 20. P. 30.
- [17] В.Г. Барьяхтар, А.И. Жуков, Д.А. Яблонский. ФТТ 21, 776 (1979).
- [18] M. Date, K. Okuda, K. Kadowaki. J. Phys. Soc. Jpn. 42, 1555 (1977).
- [19] U. Smith, S. Haraldson. J. Magn. Res. 16, 390 (1974).
- [20] H. Watanabe. J. Phys. Soc. Jap. 58, 1035 (1989).