07 Снижение поляризационных ошибок в волоконном кольцевом интерферометре с помощью поляризующих световодов

© А.М. Курбатов, Р.А. Курбатов

Филиал Центра эксплуатации объектов наземной космической инфраструктуры НИИ прикладной механики им. акад. В.И. Кузнецова, Москва

E-mail: akurbatov54@mail.ru

Поступило в Редакцию 4 октября 2010 г.

Рассмотрены поляризационные ошибки в волоконном кольцевом интерферометре Саньяка. Показано, что совместное применение поляризующих световодов на входе интерферометра и в чувствительной катушке способно радикально подавить эти ошибки.

В последнее время для точной навигации все чаще используются волоконно-оптические гироскопы (ВОГ). ВОГ содержит в своем составе волоконный кольцевой интерферометр (ВКИ) и блок обрабатывающей электроники. Одним из источников ошибок ВОГ являются поляризационные эффекты в элементах ВКИ.

На рис. 1 приведена схема ВКИ, содержащего, в частности, входной световод с линейным двулучепреломлением b_{in} , длиной L_{in} и длиной деполяризации $L_{\gamma,in}$, а также чувствительную катушку из волокна с линейным двулучепреломлением b, длиной L и длиной деполяризации $L_{\gamma} \ll L$.

В отсутствие входного световода (классическая схема ВКИ [1–5] основные вклады в поляризационную ошибку (ПО) угловой скорости обусловлены: 1) поляризационной связью мод в волокне катушки (ПО-1); 2) разьюстировкой осей волокна катушки и волноводов *Y*-разветвителя (ПО-2). Для трех составляющих ПО-1, обусловленных параметрами Стокса излучения $s_{1,2,3}$, имеем [1]:

$$\Phi_1 \sim \varepsilon^2 ph(L_\gamma L)^{1/2}, \qquad \Phi_{2,3} \sim \varepsilon p(hL_\gamma)^{1/2},$$
 (1)

Рис. 1. Схема ВКИ: *1* — источник излучения, *2* — изотропный разветвитель, *3* — интегрально-оптический *Y*-разветвитель, *4* — электроды для подачи напряжения фазовой модуляции, *5* — канальные волноводы, *6* — места стыковки канальных волноводов *Y*-разветвителя и волокна чувствительной катушки, *7* — чувствительная катушка, *8* — фотоприемник, *9* — входной световод, *10* — стык входного световода и *Y*-разветвителя.

где ε — коэффициент экстинкции канальных волноводов 5 *Y*-разветвителя 3 (рис. 1) по амплитуде поля, *p* — остаточная степень поляризации излучения, *h* — *h*-параметр волокна катушки. Ошибка Φ_1 обусловлена отрезками этого волокна в длинами L_{γ} , расположенными по всей длине симметрично относительно его середины [4], а $\Phi_{2,3}$ — начальным и конечным участками этого волокна с длинами I_{γ} [1–5]. Если чувствительная катушка выполнена из поляризующего (PZ) световода с коэффициентом α затухания *y*-волн (по мощности), то расчет, подобный описанному в [1], дает оценки

 $\Phi_1 \sim \varepsilon^2 ph(L_{\gamma/\alpha})^{1/2}, \quad \Phi_{2,3} \sim \varepsilon p\{hL_{\gamma} \exp[\alpha L_{\gamma}/2)^2] \operatorname{erfc}(\alpha L_{\gamma}/2)\}^{1/2}.$ (2)

Здесь $\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$ — функция ошибок, h — h-параметр при $\alpha = 0$. Таким образом, даже при невыполнимом на практике условии $\alpha L_{\gamma} \gg 1$ влияние дихроизма на $\Phi_{2,3}$ очень мало.

Помимо этого, на ПО-2 дихроизм волокна катушки сказывается еще меньше [4], что, казалось бы, окончательно делает его бессмысленным. Однако ниже мы покажем, что в ВКИ с сильно анизотропным световодом на входе применение РZ-волокна в чувствительной катушке полностью оправданно.

Итак, пусть на входе ВКИ имеется анизотропный световод, и пусть $L_{in} \gg L_{\gamma,in}$ (рис. 1). Это аналогично анизотропному элементу в ВКИ [6], с помощью которого ПО, выведенная в [7] в форме $\Phi = \Phi_2 + \Phi_3 + \Phi_1$ (см. (1)–(2)), подавляется до уровня $\Phi = \Phi_1$ (так как изначально

Таблица 1. ПО для ВКИ на Рис. 2 с входным РМ-световодом, поляризующим световодом чувствительной катушки и без разъюстировок его оптических осей с осями *Y*-разветвителя

α , dB/m	Ω_1 , deg/h	Ω_2 , deg/h	Ω_3 , deg/h
0	$8.5\cdot 10^{-4} (8.7\cdot 10^{-4})$	0.0055(0.0051)	0.0052(0.0054)
10^{-1}	$3.5 \cdot 10^{-4} (2.6 \cdot 10^{-4})$	0.0022(0.0023)	0.0024(0.0026)
10^{0}	$7 \cdot 10^{-5} (6.4 \cdot 10^{-5})$	$0.0011(2.9\cdot 10^{-4})$	$0.0011(3.1 \cdot 10^{-4})$
10^{1}	$2.3\cdot 10^{-5}(2\cdot 10^{-5})$	$5.2\cdot 10^{-4} (2.7\cdot 10^{-9})$	$5.3\cdot 10^{-4} (2.9\cdot 10^{-9})$

 $\Phi_1 \ll \Phi_{2,3}$ [6] (а также в (1) и (2)) учтена только поляризационная связь мод первого порядка. Численная модель сохраняющего поляризацию (PM) волокна катушки, описанная в [5], в присутствии входного световода с длиной $L_{in} \ll L$ привела нас к эмпирической формуле

$$\Phi_{2,3} \sim \varepsilon phL(L_{\gamma})^{1/2},\tag{3}$$

т.е. лишь к снижению ошибок $\Phi_{2,3}$ в 1/(hL) раз вместо их полного подавления, как в [6]. Этого недостаточно для навигационного класса точности. Покажем, что для достижения условия $\Phi_{2,3} \approx 0$ можно применить *PZ*-волокно катушки.

Для РZ-волокна мы обобщили известную модель [5]. Остальное делалось в полном соответствии с [5]. Другие параметры ВКИ: рабочая длина волны $\lambda_0 = 1.55 \,\mu$ m, ширина спектра 5 nm, $\varepsilon = 0.01$, p = 0.02, радиус катушки 40 mm, $b = 6 \cdot 10^{-4}$, L = 100 (для быстроты расчетов, так как время расчета ~ L^2 [5]). Мы опробовали модель на схеме ВКИ без входного световода и, с точностью до коэффициентов ~ 1, получили хорошее согласие с (2).

Рассмотрим входной РМ-световод ($\alpha = 0$), имеющий двулучепреломление $b_{in} = b$, при двух его длинах: $L_{in} = 1$ и 10 m. Ошибки угловой скорости $\Omega_{1,2,3}$, обусловленные $\Phi_{1,2,3}$, приведены в табл. 1 (в скобках для $L_{in} = 10$ m). Здесь мы пока не учитываем разъюстировку осей волокна катушки с осями канальных волноводов *Y*-разветвителя и поляризационную связь мод во входном световоде.

Итак, из табл. 1 следует: 1) ошибки $\Omega_{2,3}$ снижаются даже в отсутствие дихроизма в волокне чувствительной катушки ((3)); 2) ошибки $\Omega_{1,2,3}$ далее заметно снижаются дихроизмом волокна катушки; 3) при

Рис. 2. Схема образования новой ПО. Стрелка *1* объединяет волны, приводящие к классической ПО, стрелка 2 — к новой ПО. $e_{0,x,y}$ — изначальные *x*- и *y*-поляризационные моды, входящие в волокно чувствительной катушки. Стрелкой *3* показано образование волны E_1^+ из входной моды $e_{0,y}$, стрелками *4* и 5 — образование волны E_2^- из входной моды $e_{0,x}$, $z_0 = L_{in}b_{in}/b$.

 $\alpha > 1$ dB/m и $L_{in} = 10$ m ошибки $\Omega_{2,3}$ много меньше, чем при $L_{in} = 1$ m. Дадим физическую интерпретацию этих результатов.

Из-за поляризационной связи мод (далее — ПСМ) в волокне чувствительной катушки прямую волну (бегущую по часовой стрелке) и обратную волну (против часовой стрелки) можно представить в виде $E^{\pm} = E_0^{\pm} + E_1^{\pm} + E_2^{\pm}$. Здесь $E_0^{\pm} - x$ -волна в отсутствие ПСМ, $E_1^{\pm} - x$ -волна, перешедшая из входной у-волны из-за однократной перекачки мощности, E_2^{\pm} — из входной *x*-волны из-за двукратной перекачки мощности.

Далее, ошибки $\Phi_{2,3}$ (1) в отсутствие входного световода определяются волнами E_1^{\pm} и E_0^{\pm} [1]. Но в его присутствии эти волны некогерентны, поэтому они дают $\Phi_{2,3} = 0$ [6]. Однако есть также интерференция волн E_1^{\pm} и E_2^{\pm} , приводящая к $\Phi_{2,3} \neq 0$, в отличие от [6] (см. табл. 1 для $\alpha = 0$). На рис. 2 проиллюстрирована схема образования этой новой ПО.

Итак, поляризационная мода $e_{0,y}$ входит в волокно катушки в начале, а поляризационная мода $e_{0,x}$ — в конце. Первая из-за ПСМ переходит в *x*-волну E_1^+ , вторая — сначала в *y*-волну $e_{1,y}$, затем в *x*-волну E_2^- . Из-за

входного световода моды $e_{0,y}$ и $e_{0,x}$ имеют разность оптических путей (некогерентны при $L_{in} \gg L_{\gamma,in}$).

Пусть теперь на участке dz на расстоянии z от конца волокна катушки часть моды $e_{0,x}$ перешла в волну $e_{1,y}$. Последняя будет генерировать x-волну E_2^- по всей оставшейся длине L - z. Ясно, что когерентные с E_1^+ компоненты волны E_2^- появляются на расстояниях от конца волокна катушки, превышающих $z + z_0(z_0 = L_{in}b_{in}/b)$, только так компенсируется разность путей, приобретенная во входном световоде, так как волна E_2^- , находясь в состоянии волны $e_{1,y}$, проходит по оси у волокна катушки необходимое для этого расстояние. При этом компоненты волны E_2^- , образованные далее волной $e_{1,y}$ на некотором расстоянии $z + z_0 + z_1$ от конца волокна катушки, когерентны с компонентами волны E_1^+ , образовавшимися из $e_{0,y}$ в области расстояний от $z_1 - L_y$ до $z_1 + I_y$ от начала волокна. Эта схема — половина катушки, вторая — зеркальное отражение этих процессов относительно центра волокна катушки.

Отсюда для РМ-волокна чувствительной катушки при $z_0 > L$ теоретически возможно $\Omega_{2,3} \approx 0$, так как нет компонент E_2^{\pm} , когерентных с E_2^{\pm} . Однако на практике скажется ПСМ во входном световоде, ограничив подавление ошибок $\Omega_{2,3}$. Также необходимо, чтобы было $L_{in}b_{in} > Lb$ (т. е., как правило, $L_{in} \sim L$).

Далее, как скажется на величинах $\Omega_{2,3}$ дихроизм волокна чувствительной катушки?

1) Он подавляет волну $e_{0,y}$ (рис. 2), и при $z > 1/\alpha$ от начала (конца) волокна катушки волны $E_1^+(E_1^-)$ перестают генерироваться;

2) Если $\alpha z_0 \gg 1$, то волна $e_{1,y}$ (рис. 2) затухнет, прежде чем пройдет расстояние z_0 . Из-за этого в табл. 1 при $\alpha = 10$ dB/m и $L_{in} = 10$ m величина $\Omega_{2,3}$ много меньше, чем при $I_{in} = 1$. Таким образом, имеем радикальный механизм подавления ошибок $\Omega_{2,3}$ (как в [6]).

К сожалению, второй механизм почти не затрагивает Ω_1 , которая в основном подавляется тем, что остается вклад в нее лишь от участков с длиной L_{γ} , расположенных на расстояниях менее $1/\alpha$ от начала и конца *PZ*-волокна катушки (2). Дальнейшее подавление Ω_1 возможно, только если входной световод также является поляризующим.

Рассмотрим ВКИ с разъюстировкой осей волокна катушки и волноводов *Y*-разветвителя в пределах 2°. Дихроизм входного световода $\alpha_{in} = 60 \text{ dB}$. Далее, $\alpha = 10 \text{ dB/m}$, $b_{in} = 8 \cdot 10^{-4}$, $b = 6 \cdot 10^{-4}$. Рассмотрим комбинации с ПСМ во входном световоде и без нее, с разъ-

Таблица 2. ПО для ВКИ на рис. 2 с поляризующим входным световодом для случаев поляризующего и сохраняющего поляризацию волокна чувствительной катушки

Поляризующее волокно чувствительной катушки						
ВКИ	Ω_1 , deg/h	Ω_2 , deg/h	Ω_3 , deg/h			
Без ПСМ и разьюстировки Без ПСМ с разьюстировкой С ПСМ без разьюстировки С ПСМ и разьюстировкой	$\begin{array}{c} 2\cdot 10^{-6}(1.9\cdot 10^{-6})\\ 3\cdot 10^{-6}(3.2\cdot 10^{-6})\\ 2\cdot 10^{-6}(1.9\cdot 10^{-6})\\ 5.4\cdot 10^{-6}(3.3\cdot 10^{-6})\end{array}$	$\begin{array}{c} 2.2 \cdot 10^6(0) \\ 8.0 \cdot 10^{-5}(0) \\ 2.2 \cdot 10^{-6}(9.6 \cdot 10^{-9}) \\ 8.0 \cdot 10^{-5}(6 \cdot 10^{-8}) \end{array}$	$\begin{array}{c} 2.3\cdot 10^{-6}(0)\\ 7.7\cdot 10^{-5}(0)\\ 2.3\cdot 10^{-6}(9.3\cdot 10^{-9})\\ 7.7\cdot 10^{-5}(5.8\cdot 10^{-8})\end{array}$			

Сохраняющее	поляризацию	волокно	чувствительной	катушки
Сохраниющее	полиризацию	DOMONIO	Tyber birtesibilon	катушки

ВКИ	Ω_1 , deg/h	Ω_2 , deg/h	Ω ₃ , deg/h
Без ПСМ и разъюстировки Без ПСМ с разъюстировкой С ПСМ без разъюстировки С ПСМ и разъюстировкой	$\begin{array}{c} 6.3\cdot 10^{-6}(5.4\cdot 10^{-6})\\ 7.9\cdot 10^{-6}(7\cdot 10^{-6})\\ 6.3\cdot 10^{-6}(5.4\cdot 10^{-6})\\ 10^{-5}(8.5\cdot 10^{-6})\end{array}$	$\begin{array}{c} 2.7\cdot 10^{-4}(2.2\cdot 10^{-4})\\ 5.6\cdot 10^{-4}(4.8\cdot 10^{-4})\\ 2.7\cdot 10^{-4}(2.2\cdot 10^{-4})\\ 5.6\cdot 10^{-4}(4.8\cdot 10^{-4})\end{array}$	$\begin{array}{c} 2.6\cdot 10^{-4}(2.1\cdot 10^{-4})\\ 5.3\cdot 10^{-4}(4.8\cdot 10^{-4})\\ 2.6\cdot 10^{-4}(2.1\cdot 10^{-4})\\ 5.3\cdot 10^{-4}(4.8\cdot 10^{-4})\end{array}$

юстировкой и без нее (4 случая). ПО приведены в табл. 2, где даны ПО для $L_{in} = 1$ m (в скобках — для $L_{in} = 20$ m). Также даны ПО для РМ-волокна катушки. Здесь, чтобы подчеркнуть совместное действие входного световода и *PZ*-волокна катушки, мы считаем, что дихроизм волноводов 5*Y*-разветвителя *3* (рис. 1) отсутствует ($\varepsilon = 1$).

Итак, при $L_{in} = 20$ m ошибка $\Omega_{2,3}$ не равна нулю только из-за ПСМ во входном световоде, а при $L_{in} = 1$ m она определяется ПСМ в волокне катушки и разьюстировкой (ее можно рассматривать как точечные центры ПСМ и применить к ним схему на рис. 2). Таким образом, деполяризация во входном *PZ*-световоде и дихроизм *PZ*-волокна катушки могут радикально подавить $\Omega_{2,3}$ (если $\alpha z_0 \gg 1$), т.е. достичь результата, полученного в [6]. Отметим, что здесь можно взять $L_{in} \ll L$, в отличие от ВКИ с РМ-световодами (см. выше).

Совместное действие деполяризации и дихроизма во входном световоде и *PZ*-волокне катушки можно считать частью общего принципа подавления ПО в ВКИ с помощью деполяризации и дихроизма. Ранее [8] этот принцип проявил себя через смягчение требований к поляризатору с помощью деполяризации в волокне катушки.

Что касается ошибки Ω_1 , то она не подавляется до нуля даже при $L_{in} = 20$ m. Именно Ω_1 теперь определяет общую ПО. Но ее подавление дихроизмом входного световода и *PZ*-волокна катушки тем не менее заметно. Кроме того, мы рассматривали длину *L* всего 100 m, тогда как $\Omega_1 \sim 1/L$ (2). Также не учитывался дихроизм волноводов *Y*-разветвителя. Но и без этого ПО мала даже для ВОГ навигационного класса точности.

В случае же РМ-волокна катушки разница ошибок для $L_{in} = 1$ и 20 m невелика, и все эти ошибки определяются ПСМ в волокне катушки и разъюстировкой, тогда как ПСМ во входном световоде на них практически не влияет. При этом ошибки $\Omega_{2,3}$ на несколько порядков, а Ω_1 в несколько раз больше, чем соответствующие ошибки в случае *PZ*-волокна катушки, благодаря чему применение *PZ*-волокна в чувствительной катушке ВКИ может быть полностью оправданным.

Меры по дальнейшему устранению ПО, на наш взгляд, имеют смысл лишь в единичных сверхточных измерениях, где нет требований компактности ВКИ. В [4] описан ВКИ для обнаружения эффектов общей теории относительности с чувствительной катушкой диаметром несколько километров, выполненной из изотропного одномодового во-

локна. В нашем случае радиус катушки может быть порядка нескольких метров и менее.

На практике дихроизм в волокне катушки можно получить либо на основе обычных анизотропных световодов с так называемой малой числовой апертурой [9], либо на основе анизотропных *W*-волокон. Входной РZ-световод также можно выполнить на основе W-профиля показателя преломления [10]. Прототипом W-волокна для чувствительной катушки можно считать волокно, описанное нами в [11]. Здесь дихроизм обеспечивается разностью изгибных потерь основных поляризационных мод. Если радиус намотки не мал (> 50 mm), спектральные кривые этих потерь резко растут, так что достичь указанных выше значений дихроизма, на наш взгляд, реально. А например, для ВОГ навигационного класса точности, как видно из табл. 2, достаточно и меньших значений дихроизма волокна чувствительной катушки (~ 1 dB/m, как показывает расчет).

Список литературы

- [1] Козел С.М. и др. // Оптика и спектроскопия. 1986.Т. 61. В. 6. С. 1295.
- [2] Burns W.K. et al. // J. Lightwave Technology. 1983. V. LT-1. N 1. P. 98.
- [3] Курбатов А.М. // Отчет по НИР "Разработка волоконного гироскопа". Арзамас: ОКБ "Импульс", МАП, 1984.
- [4] Андронова И.А., Малыкин Г.Б. // УФН. 2002. Т. 172. В. 8. С. 849.
- [5] Малыкин Г.Б., Позднякова В.И. Оптика и спектроскопия. 2003. Т. 95. В. 4. С. 646.
- [6] Jones E., Parker J.W. // Electr. Lett. 1986. V. 22. 1. P. 54.
- [7] Kintner E.C. // Opt. Lett. 1981. V. 6. 3. P. 154.
- [8] Burns W., Moeller R. // J. Lightwave Technology. 1984. V. LT-2. N 4. P. 430.
- [9] Varnham M.P. et al. // Electron. Lett. 1983. V. 19. N 7. P. 246.
- [10] Messerly M. et al. // J. Lightwave Technology. 1991. V. 9. N 7. P. 817.
- [11] Курбатов А.М., Курбатов Р.А. // Письма в ЖТФ. 2010. V. 36. В. 17. С. 23.