14,16

Рентгеноспектральное и теоретическое исследование электронного строения фенилциклосиланов $(SiPh_2)_n$ (n = 4-6)

© Т.Н. Даниленко, В.Г. Власенко, М.М. Татевосян

Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону, Россия

E-mail: tdanil1982@yandex.ru

(Поступила в Редакцию 2 апреля 2013 г.)

Получены рентгеновские эмиссионные SiK $\alpha_{1,2}$ - и SiK β_1 -спектры ряда фенилциклосиланов (SiPh₂)_n (n = 4-6). С использованием результатов квантово-химических расчетов в приближении теории функционала плотности проведена интерпретация тонкой структуры SiK β_1 -спектров. Построены распределения плотностей электронных состояний атомов кремния по валентной полосе, установлены типы химических связей, обеспечивающих взаимодействия Si–Si и Si–Ph. На основе теории натуральных связевых орбиталей проведен анализ химического связывания в исследованном ряду фенилциклосиланов.

1. Введение

Исследования поли-, олигосиланов, в том числе циклосиланов, стимулированы широким практическим применением таких соединений. Известно [1-9], что кремнийорганические соединения, такие как поли- и циклосиланы, имеют необычные оптические свойства, например сильное поглощение в ультрафиолетовой области, что может быть использовано, в частности, в фотолитографии при производстве полупроводниковых электронных устройств на основе кремния. Кроме того, эти соединения в силу структурных особенностей обладают нелинейными оптическими характеристиками. Кремнийорганические соединения имеют высокие температуры деградации. С помощью допирования кремнийорганических полимеров можно управлять их электропроводящими свойствами и получать полупроводниковые и электропроводящие соединения. Наиболее полный обзор, посвященный физико-химическим свойствам и практическому применению поли-, олигосиланов, недавно приведен в [10].

Многие свойства таких кремнийорганических соединений аналогичны характеристикам, проявляемым соответствующим углеводородным соединением, так как кремний изовалентен углероду, однако с точки зрения электронной структуры имеются существенные различия. Например, оптические спектральные свойства циклополисиланов определяются высоколежащими Si–Si σ -молекулярными орбиталями (MO) и низколежащими σ^* -MO, тогда как в углеводородных соединениях они определяются $\pi - \pi^*$ -электронными переходами ароматической системы. Теория σ -делокализации, развитая для олигосиланов [11–16] по аналогии с π -делокализацией для углеводородных соединений, применима и для циклосиланов.

Расчеты электронной структуры поли- и циклосиланов в основном и возбужденном состояниях с целью интерпретации спектроскопических и физико-химических свойств приведены в многочисленных работах [17–20]. Несколько обзоров суммируют полученные результаты теоретического исследования электронного строения различных полисиланов [21–26].

Экспериментальные работы в основном касались исследования оптических [27] и фотоэлектронных спектров [28–30] рассматриваемых кремнийорганических соединений. Существует ограниченное число работ, посвященных исследованию электронной структуры кремнийорганических соединений методом рентгеновской спектроскопии [31–37], хотя этот метод имеет ряд преимуществ по сравнению с другими спектральными методами [38,39].

Благодаря анализу различных серий рентгеновских линий метод рентгеновской спектроскопии позволяет исследовать систему молекулярных уровней соединения, оценить степень участия определенных атомов и атомных орбиталей в образовании химических связей в молекулах и кристаллах. Так, например, рентгеновский эмиссионный SiK_{β1}-спектр возникает в результате электронных переходов с валентных уровней на предварительно ионизированный 1s-уровень кремния. Такие электронные переходы подчинены дипольным правилам отбора, в связи с чем в Si $K\beta_1$ -спектрах проявляются только те валентные молекулярные уровни, которые образованы с участием 3*р*-электронов кремния. При этом интегральные интенсивности компонентов спектра пропорциональны Si 3*p*-заселенностям МО соединения. Это обстоятельство позволяет определить степень участия атома кремния в химических связях по тонкой структуре Si $K\beta_1$ -спектров.

Рентгеновские эмиссионные SiK $\alpha_{1,2}$ -спектры образуются в результате дипольных электронных переходов между внутренним 2p-уровнем и вакансией в 1*s*-уровне кремния. Влияние изменений химического взаимодействия атома кремния в различных соединениях проявляется только в сдвигах максимумов SiK $\alpha_{1,2}$ -спектров, обусловленных различным экранированием остовных уровней и соответствующим изменением заряда иона кремния.

Рис. 1. Оптимизированные структуры молекул (SiPh₂)₄ (a), (SiPh₂)₅ (b) и (SiPh₂)₆ (c).

Основной задачей настоящего исследования является выяснение закономерностей формирования электронной структуры циклических кремнийорганических соединений $(SiPh_2)_n$ (n = 4-6): $(SiPh_2)_4$ (октафенилтетрациклосилан), $(SiPh_2)_5$ (декафенилпентациклосилан) и $(SiPh_2)_6$ (додекафенилциклогексасилан) — путем совместного анализа расчетных и рентгеноспектральных данных.

2. Экспериментальная часть

Рентгеновские эмиссионные SiK β_1 - и SiK_{1,2}-спектры (SiPh₂)₄, (SiPh₂)₅, (SiPh₂)₆, SiPh₄ получены на спектрографе ДРС-2М [40] с фокусировкой по методу Иоганна. Использовался кварцевый кристаллоанализатор (1010) с радиусом изгиба 500 mm. Разрешающая сила спектрографа, измеренная по дублету Со $K\alpha_{1,2}$, составляла 15000, что соответствует аппаратурному искажению в области исследуемой линии 0.15 eV. Для регистрации спектров использовался фотометод, время экспозиции SiK β_1 -спектров составляло около 30 h при режиме рент-геновской трубки БХВ-9Pd (U = 22 kV и I = 90 mA).

3. Квантово-химические расчеты

Расчеты атомной структуры и электронного строения молекул проводились методом теории функционала плотности (ТФП) с использованием программного комплекса Gaussian 03 [41]. Оптимизация геометрии молекул и расчет распределения электронной плотности проводились с использованием гибридного трехпараметрического функционала B3LYP (Becke, Lee-Yang-Parr) с корреляционной частью в форме Ли-Янга-Парра [42] и обменной частью Бекке [43]. Для всех атомов исследуемых соединений использовался стандартный расширенный валентно-расщепленный базис $6-311G^{**}$ [44,45]. Такая схема расчета была успешно применена для квантово-химических расчетов большого количества кремнийорганических соединений [46–49]. Начальные координаты атомов, необходимые для расчетов оптимизации, были взяты из кристаллографических данных для соединений (SiPh₂)₄ [50], (SiPh₂)₅ [51], (SiPh₂)₆ [52].

Энергии рентгеновских переходов $E_{i,j}$ вычислялись как разности между энергиями валентных ε_i и внутренних уровней ε_j , найденных в приближении "замороженных" орбиталей (вертикальные потенциалы ионизации по теореме Купманса),

$$E_{i,j} = \varepsilon_i - \varepsilon_j. \tag{1}$$

Интенсивности рентгеновских переходов с занятых молекулярных орбиталей на остовную атомную орбиталь (AO) *j* атома *A* вычислялись по формулам [53]

$$I_{ij} \propto \left| \int \varphi_i^A(r)(er)\varphi_j(r)d\tau \right|^2$$

= $N \left| \int \Sigma_A \varphi_{1s}^A(r)(er)\Sigma_A C_{jp}\varphi^A(r)d\tau \right|^2$, (2)

$$I_{ij}^A \sim N \Sigma_i \left| C_{ij}^A \right|^2, \tag{3}$$

где C_{ij}^A — коэффициенты ЛКАО¹, с которыми в избранные МО входят АО *i* и *j*; *N* — нормировочный множитель, *e* — заряд электрона. Для получения эмиссионного SiK β_1 -спектра найденные из расчета коэффициенты C_{ij}^2 (*j* = 3*p*) суммировались по формуле (3) для атомов кремния. При построении рентгеновских эмиссионных спектров дискретные линии, возникающие за счет переходов с определенных МО, уширялись на лоренцову функцию с шириной $\gamma = 0.5$ eV.

Помимо стандартного анализа заселенностей по методу Малликена [54,55] для анализа распределения электронной плотности в исследованных молекулах циклофенилсиланов был использован метод натуральных связевых орбиталей (HCO) (или NBO — natural bond orbital) [56]. Расчеты HCO проводились в приближении B3LYP/6-311G(d, p) для оптимизированной геометрии молекул.

4. Обсуждение результатов

Молекулярная структура фенилциклосиланов $(SiPh_2)_n$ (n = 4-6) была оптимизирована методом ТФП, в качестве исходных данных использовались рентгеноструктурные результаты [50–52]. Оптимизированные структуры молекул представлены на рис. 1. Полученные в результате оптимизации значения геометрических па-

Рис. 2. Экспериментальные рентгеновские эмиссионные $SiK\beta_1$ -спектры соединений $SiPh_4$ (1) [34], $(SiPh_2)_4$ (2), $(SiPh_2)_5$ (3) и $(SiPh_2)_6$ (4).

раметров молекул и соответствующие экспериментальные значения представлены в табл. 1. Как видно из данных табл. 1, оптимизированные параметры атомного строения фенилциклосиланов находятся в хорошем согласии с экспериментальными для всех соединений. Отличие теоретических межатомных расстояний от экспериментальных значений составило около 0.02 Å, а величины валентных углов — около 1°. Установлено, что кремниевый цикл в (SiPh₂)₄ является практически плоским квадратом, где торсионный угол оптимизированной структуры равен 11.8° (эксперимент — 12.8°), в молекуле $(SiPh_2)_5$ он имеет конформацию искаженного конверта с торсионным углом 38.5° (эксперимент — 39.8°). В молекуле (SiPh₂)₆ с Si-циклом, имеющим конформацию типа "кресло", рассчитанные и экспериментальные торсионные углы практически одинаковы и составляют 42.3 и 42.2° соответственно.

Электронное строение соединений $(SiPh_2)_n$ (n = 4-6)было исследовано с помощью метода рентгеновской эмиссионной спектроскопии с интерпретацией полученных результатов на основе квантово-химических расчетов в приближении ТФП. В исследованных фенилциклосиланах присутствуют химические связи Si-C и Si-Si. Проанализируем проявление этих взаимодействий в Si $K\beta_1$ -спектрах соединений (SiPh₂)₄, (SiPh₂)₅ и (SiPh₂)₆. С этой целью на рис. 2 сопоставлены $SiK\beta_1$ -спектры фенилциклосиланов и тетрафенилсилана, тонкая структура спектра которого отражает только Si-С-взаимодействия, ввиду отсутствия связей Si-Si в SiPh₄. В отличие от Si $K\beta_1$ -спектра тетрафенилсилана в спектрах циклических соединений присутствует четко выраженный пик А с энергией 1837.4 eV. Наличие коротковолновой компоненты А в тонкой структуре $SiK\beta_1$ -спектров всех исследованных фенилциклосиланов, по-видимому, следует рассматривать как проявление циклических Si-Si-связей.

¹ ЛКАО — линейная комбинация атомных орбиталей.

Межатомное	Расстоян	ие, Å	Валентный ВЗLYР/6-311 <i>G</i> **, Эн		Эксперимент,		
расстояние	B3LYP/6-311G**	Эксперимент	угол	deg	deg		
	(SiPh ₂) ₄						
Si ₁ -Si ₂	2.411	2,381	Si1-Si47-Si48	89.7	89.6		
$Si_1 - Si_{47}$	2.406	2.376	$Si_1 - Si_{47} - C_{49}$	115.4	112.5		
Si47-Si48	2.411	2.381	$Si_1 - Si_{47} - C_{50}$	113.4	114.3		
$Si_{48}-Si_2$	2.406	2.370	$Si_{47} - Si_{48} - Si_{2}$	89.7	89.7		
$Si_1 - C_3$	1.899	1.884	$Si_{47} - Si_{48} - C_{51}$	113.8	112.6		
Si_1-C_9	1.903	1.889	Si ₄₇ -Si ₄₈ -C ₅₂	116.0	118.9		
$Si_2 - C_{15}$	1.904	1.887	$Si_{48}-Si_2-Si_1$	89.7	89.7		
$Si_2 - C_{21}$	1.899	1.885	Si ₄₈ -Si ₂ -C ₁₅	113.6	113.3		
Si47-C49	1.899	1.884	$Si_{48} - Si_2 - C_{21}$	115.5	112.2		
Si ₄₇ -C ₅₀	1.903	1.889	$Si_2 - Si_1 - Si_{47}$	89.7	89.6		
Si ₄₈ -C ₅₁	1.904	1.887	$Si_2-Si_1-C_3$	116.0	118.0		
Si ₄₈ -C ₅₂	1.899	1.885	$Si_2-Si_1-C_9$	113.7	112.6		
CAO	0.02	1	CAO	1.3			
		(Si	Ph ₂) ₅				
Si_1-Si_2	2.394	2.371	$Si_1 - Si_2 - Si_3$	103.9	102.7		
Si_2-Si_3	2.408	2.385	$Si_2 - Si_3 - Si_4$	104.1	104.1		
Si_3-Si_4	2.418	2.404	$Si_3-Si_4-Si_5$	104.3	104.4		
Si ₄ -Si ₅	2.443	2.413	$Si_4 - Si_5 - Si_1$	107.5	106.7		
Si_5-Si_1	2.427	2.405	$Si_5 - Si_1 - Si_2$	104.1	104.8		
Si_1-C_6	1.906	1.896	$Si_1 - Si_2 - C_{18}$	107.1	106.2		
$Si_1 - C_{12}$	1.909	1.885	$Si_1 - Si_2 - C_{24}$	115.7	116.3		
$Si_2 - C_{18}$	1.911	1.903	$Si_2 - Si_3 - C_{30}$	112.5	113.8		
$Si_2 - C_{24}$	1.903	1.877	Si ₂ -Si ₃ -C ₃₆	107.7	108.6		
$Si_3 - C_{30}$	1.908	1.869	$Si_3-Si_4-C_{42}$	107.5	106.7		
$Si_3 - C_{36}$	1.912	1.882	$Si_3-Si_4-C_{48}$	113.6	114.3		
Si_4-C_{42}	1.920	1.917	$Si_4-Si_2-C_{54}$	112.8	113.6		
Si_4-C_{48}	1.911	1.908	$Si_4-Si_5-C_{60}$	110.0	108.5		
$S_{15}-C_{54}$	1.908	1.902	$S_{15}-S_{11}-C_{12}$	107.9	106.3		
$S_{15}-C_{60}$	1.910	1.911	$S_{15}-S_{11}-C_{6}$	113.0	113.5		
CAU	0.01		CAU	0.8			
		(Si	$Ph_2)_6$				
Si_1-Si_2	2.425	2.393	$Si_1 - Si_2 - Si_{40}$	113.3	113.2		
$Si_2 - Si_{40}$	2.428	2.394	$Si_2 - Si_{40} - Si_{41}$	115.0	114.5		
$Si_{40} - Si_{41}$	2.430	2.396	$Si_{40} - Si_{41} - Si_{42}$	113.0	113.6		
$Si_{41} - Si_{42}$	2.425	2.393	$Si_{41} - Si_{42} - Si_3$	113.3	113.2		
$Si_{42}-Si_3$	2.428	2.394	$Si_{42}-Si_3-Si_1$	115.0	114.5		
$S_{13}-S_{11}$	2.430	2.396	$S_{1_3}-S_{1_1}-S_{1_2}$	113.0	113.6		
$S_{11}-C_4$	1.914	1.903	$S_{11} - S_{12} - C_{16}$	112.4	113.3		
$S_{11}-C_{10}$	1.914	1.897	$S_{11} - S_{12} - C_{22}$	108.2	107.8		
$S_{12} - C_{16}$	1.914	1.894	$S_{12} - S_{140} - C_{67}$	107.3	105.4		
$S_{12} - C_{22}$	1.913	1.894	$S_{12} - S_{140} - C_{73}$	108.8	109.4		
$S_{140} - C_{67}$	1.915	1.89/	$S_{140} - S_{141} - C_{55}$	109.0	109.0		
$S_{140} - C_{73}$	1.918	1.904	$S_{140} - S_{141} - C_{61}$	108.9	107.2		
$S_{141} - C_{55}$ Siu - Cu	1.714	1.905	$S_{141} - S_{142} - C_{43}$ $S_{141} - S_{142} - S_{143}$	112.4	107.8		
$S_{141} - C_{61}$	1.914	1 804	$Si_{41} - Si_{42} - Si_{49}$ $Si_{42} - Si_{2} - C_{22}$	107.2	107.0		
$S_{142} - C_{43}$	1.714	1.024	$S_{142} = S_{13} = C_{28}$ $S_{142} = S_{13} = C_{24}$	107.5	100.4		
$Si_{42} - C_{49}$ $Si_2 - C_{22}$	1.915	1.024	$S_{142} = S_{13} = C_{34}$ $S_{12} = S_{13} = C_{34}$	100.0	109.4		
$Si_3 = C_{28}$	1.915	1 904	$Si_3 - Si_1 - C_4$ $Si_2 - Si_1 - C_{12}$	108.0	107.0		
	1.710	1.207		100.7	107.2		
CAU	0.022	2	CAU	0.8			

Таблица 1. Расчетные значения геометрических параметров $(SiPh_2)_n$ (n = 4-6), найденные в приближении B3LYP/6-311 G^{**} , и средние абсолютные отклонения (САО) рассчитанных значений от экспериментальных данных [50-52]

Рис. 3. Экспериментальные рентгеновские эмиссионные SiK β_1 -спектры и распределения парциальных плотностей электронных состояний Si(*s*, *p*, *d*) (верхний ряд) и C(*s*, *p*) (нижний ряд) в валентной полосе соединений (SiPh₂)₄ (*a*), (SiPh₂)₅ (*b*) и (SiPh₂)₆ (*c*). Также показаны рассчитанные диаграммы уровней энергий МО для этих соединений.

Рис. 4. Вид ВЗМО (*a*) и ВЗМО-1 (*b*) для (SiPh₂)₄, (SiPh₂)₅, (SiPh₂)₆.

$E, eV (SiK\beta_1)$	$\varepsilon_i, \mathrm{eV}$	Ph,%	Si,%	Тип связи
1836.5 (A)	-5.5 $\{-5.9; -6.1\}^*$	53 57-58	47(p) 11 - 12(s) + 28 - 30(p) + 2(d)	p_{σ} Si–Si $d_{\pi} + (sp)_{\sigma}$ Si–Si
1835.2 (A')	$\{-6.7; -7.0\}$	72-96	4 - 9(s) + 4 - 24(p)	p_{π} Si–C
1834.4 (<i>B</i>)	$ \{-7.2; -7.4\} \\ \{-7.8; -8.0\} \\ -8.3 \\ -8.4 $	69-74 77-78 76 67	24 - 30(p) 22 - 23(p) 24(p) $3(s) + 30(p)$	$p_{\sigma} \operatorname{Si-Si} \\ p_{\sigma} \operatorname{Si-C} \\ p_{\pi} \operatorname{Si-Si} \\ s_{\sigma} \operatorname{Si-Si}, p_{\sigma} \operatorname{Si-C} \end{cases}$
1831.5 (C)	$\begin{array}{c} -9.3 \\ -9.4 \\ \{-10.0; -10.1\} \\ \{-10.7; -11.2\} \end{array}$	85 90 80-88 90	13(s) + 2(p) 10(p) 12 - 16(s) + 4(p) 0 - 2(s) + 4 - 8(p)	$s_{\sigma} \operatorname{Si-Si}, s_{\sigma} \operatorname{Si-C} \\ p_{\sigma} \operatorname{Si-C} \\ s_{\sigma} + p_{\sigma} \operatorname{Si-Si} \\ s_{\sigma} \operatorname{Si-Si}, p_{\sigma} \operatorname{Si-C} \end{cases}$
1829.4 (D)	$\{-11.5; -13.5\}$	79-96	1 - 21(s) + 0 - 4(p)	$s_{\sigma} + p_{\sigma} \operatorname{Si-C}$
1828.0 (E)	$-14.3 \\ -14.7 \\ \{-14.8; -17.3\}$	71 96 68–100	27(s) + 2(p) 2(s) + 2(p) 0 - 32(s)	$s_{\sigma} + p_{\sigma} \operatorname{Si-C}$ $s_{\sigma} \operatorname{Si-C}$
1825.4 (F)	-20.3	98	2(p)	p_{σ} Si–C

Таблица 2. Энергии E компонент Si $K\beta_1$ -спектра (SiPh₂)₄, рассчитанные энергии ε_i , состав МО и соответствующий им тип химических связей

* В фигурных скобках указан интервал энергий для соответствующих МО.

Таблица 3. Энергии E компонент Si $K\beta_1$ -спектра (SiPh₂)₅, рассчитанные энергии ε_i , состав МО и соответствующий им тип химических связей

$E, eV (SiK\beta_1)$	$\varepsilon_i, \mathrm{eV}$	Ph,%	Si, %	Тип связи
1837.4 (A)	$\{-5.81; -5.77\} \\ \{-6.4; -6.6\}$	52–54 78–88	$\frac{1-5(s)+41(p)+2(d)}{0-7(s)+8-15(p)}$	$d_{\pi} + (sp)_{\sigma} \operatorname{Si-Si}_{p_{\sigma}} \operatorname{Si-Si}$
1836.3 (A')	$\{-6.81; -7.1\}$	84-94	2 - 7(s) + 3 - 9(p)	$p_{\pi} \operatorname{Si-C}$
1835.4 (<i>B</i>)	$ \begin{cases} -7.28; -7.38 \\ \{-7.6; -7.7\} \\ \{-7.77; -7.8\} \\ \{-7.9; -8.2\} \\ -8.3 \end{cases} $	65–66 67–74 74–79 77–78 70	$\begin{array}{c} 2-4(s)+31-32(p)\\ 1(s)+24-31(p)+1(d)\\ 20-26(p)+0-1(d)\\ 0-1(s)+21-23(p)\\ 2(s)+28(p) \end{array}$	p_{σ} Si-Si p_{σ} Si-C p_{π} Si-Si p_{σ} Si-Si
	-9.2	90	8(s) + 2(p)	s Si–Si
	{-9.2; -9.3}	87-94	6 - 13(s)	s _o Si–Si
1832.8 (C)	$-9.4 \\ -9.7 \\ \{-10.1; -10.6\} \\ \{-10.67; -10.7\}$	83 87 89–94 92	13(s) + 4(p)10(s) + 3(p)1 - 6(s) + 4 - 7(p)8(p)	s_{σ} Si-C s_{σ} Si-Si p_{σ} Si-C p_{π} Si-Si
1830.1 (D)	$\{-11.8; -12.4\}$	84-96	4 - 14(s) + 0 - 2(p)	s_{σ} Si–C
1827.9 (E)	{-12.9; -14.9}	65-76	20 - 33(s) + 0 - 4(p)	s_{σ} Si–Si
1826.5 (F)	$\{-16.0; -16.5\}\ -16.6$	92–100 72	$0 - \frac{8(s)}{28(s)}$	s_{σ} Si–C s_{σ} Si–Si

Перейдем к совместному анализу тонкой структуры экспериментальных Si $K\beta_1$ -спектров и теоретических распределений плотностей электронных состояний (РПЭС) Si(s, p, d) и C(s, p) в валентной полосе соединений (SiPh₂)₄, (SiPh₂)₅ и (SiPh₂)₆, представлен-

ных на рис. 3. Дополнительно в табл. 2–4 приведены экспериментальные значения энергий компонент SiK β_1 -спектров, энергии и состав MO, и характер химических взаимодействий (тип связи) для циклофенил-силанов.

$E, eV (SiK\beta_1)$	$\varepsilon_i, \mathrm{eV}$	Ph,%	Si, %	Тип связи
1837.3 (A)	-5.8 {-5.9; -6.1}	52 56-61	$\frac{48(p)}{8-12(s)+12-31(p)}$	$p_{\sigma} \operatorname{Si-Si}_{(s p)_{\sigma} \operatorname{Si-Si}}$
1836.5 (A')	{-7.0; -6.8}	82-93	0 - 4(s) + 6 - 14(p)	p_{π} Si-C
1835.4 (<i>B</i>)	$\{-7.6; -7.3\}$ $\{-7.8; -7.6\}$	$69-70 \\ 63-78$	$0 - 2(s) + 29 - 30(p) \\ 22 - 37(p)$	$p_{\sigma} \operatorname{Si-C} p_{\sigma} \operatorname{Si-Si}$
	{-8.2; -7.9}	69-76	2(s) + 22(p)	p_{π} Si–Si
1833.4 (<i>C</i>)	$ \{-9.5; -9.2\} \\ \{-10.2; -10.1\} \\ \{-10.7; -10.5\} $	79–85 88 93–91	$\begin{array}{c} 12 - 18(s) + 3(p) \\ 6(s) + 6(p) \\ 7 - 9(p) \end{array}$	s_{σ} Si–Si p_{σ} Si–Si p_{π} Si–Si
1831.4 (D)	$ \{-11.6; -11.4\} \\ \{-11.6; -12.3\} $	79-85 83-88	$\frac{14 - 18(s) + 1(p)}{10 - 12(s) + 2 - 5(p)}$	s_{σ} Si–Si s_{σ} Si–C
	{-13.4; -12.4}	64-74	24 - 32(s) + 2 - 3(p)	s_{σ} Si–Si
1829.2 (E)	{-14.2; -14.1}	84-85	8 - 14(s) + 1 - 2(p)	s_{σ} Si–C
1827.2 (F)	{-14.6; -16.4}	67-87	10 - 32(s) + 0 - 3(p)	s _o Si–Si

Таблица 4. Энергии E компонент Si $K\beta_1$ -спектра (SiPh₂)₆, рассчитанные энергии ε_i , состав МО и соответствующий им тип химических связей

Как видно из рис. 3, теоретические SiK β_1 -спектры, представляющие собой РПЭС Si 3p, в деталях передают тонкую структуру экспериментальных SiK β_1 -спектров. При этом энергетические положения максимумов РПЭС совпадают с положениями компонент экспериментальных спектров с точностью до 0.3 eV, что сопоставимо с точностью рентгеноспектрального эксперимента (± 0.1). Такое согласие расчетных и экспериментальных спектральных параметров дает возможность использовать как РПЭС, так и данные расчета, приведенные в табл. 2–4, для описания особенностей химических связей в (SiPh₂)₄, (SiPh₂)₅ и (SiPh₂)₆.

Протяженная часть Si $K\beta_1$ -спектров в энергетическом интервале 1820–1835 eV эВ и РПЭС атомов Si и C для соединений (SiPh₂)₄, (SiPh₂)₅, (SiPh₂)₆ и SiPh₄ (рис. 2 и 3) демонстрирует подобие энергетических структур спектров всего ряда соединений. Исходя из табличных данных расчетов, в отмеченной области Si $K\beta_1$ -спектров проявляются компоненты, отвечающие как взаимодействиям атомов кремния Si–Si в цикле, так и связи Si–C.

Наиболее интенсивные компоненты SiK β_1 -спектров *B*, *C* соответствуют в основном взаимодействиям атомов кремния с атомами углерода бензольного кольца, тогда как длинноволновые компоненты спектров *D*, *E*, *F*, *G* определяются s_{σ} Si–C-взаимодействиями, о чем также свидетельствуют данные табл. 2–4. Следует отметить, что определенный вклад в формирование основного максимума *B* вносит $(p-d)_{\pi}$ Si–C-взаимодействие *d*-орбиталей кремния с *p*-орбиталями углерода. Таким образом, подтверждается факт участия *d*-орбиталей кремния в образовании химических связей в фенилциклосиланах.

Коротковолновая компонента Si $K\beta_1$ -спектра A', которая присутствует в Si $K\beta_1$ -спектре SiPh₄, отражает взаимодействие *п*-системы бензольного кольца с *p*_{*σ*}орбиталями кремния. Несмотря на то что компонента А' в SiKβ₁-спектрах фенилциклосиланов не проявляется ввиду наложения более интенсивной близколежащей компоненты А', соответствующий компоненту А' тип химической связи p_{π} Si-C осуществляется и в фенилциклосиланах. Об этом свидетельствуют расчетные данные состава МО с энергиями в интервале (-6.7; -7.1 eV), приведенные в табл. 2–4, и РПЭС Si(p) и C(p) на рис. 3. На рис. 4 показаны верхние занятые МО (ВЗМО и B3MO-1), которые демонстрируют σ -взаимодействия между атомами кремния в циклах (SiPh₂)₄, (SiPh₂)₅, (SiPh₂)₆ в отличие от соответствующих углеродных циклических соединений, у которых ВЗМО являются π-орбиталями. Таким образом, коротковолновой компоненте А соответствуют самые высоколежащие молекулярные уровни фенилциклосиланов, МО которых определяют в основном p_{σ} Si-Si-, а также d_{π} Si-Si-взаимодействия в Si-циклах.

В табл. 5 представлены значения заселенностей и параметры гибридизации Si–Si и S–C HCO для $(SiPh_2)_n$ (n = 4-6). В HCO-анализе каждую связующую σ_{AB} и антисвязующую σ_{AB}^* орбитали между атомами A и B можно представить в виде линейной комбинации двух направленных валентных гибридизированных орбиталей h_A и h_B этих атомов

$$\sigma_{AB} = C_A h_A + C_B h_B, \tag{4}$$

$$\sigma_{AB}^* = C_B h_A - C_B h_A, \tag{5}$$

где *h_A* и *h_B* — гибридизированные орбитали, *C_A* и *C_B* — поляризационные коэффициенты.

Связь	НСО	Заселенность, e^-				
	(SiPh ₂) ₄					
$\begin{array}{c} Si_1 - Si_2 \\ Si_1 - C_3 \end{array}$	$\begin{array}{l} 0.7070(sp^{3.21}d^{0.02})_{\mathrm{Si}_1} + 0.7072(sp^{3.20}d^{0.02})_{\mathrm{Si}_2} \\ 0.5225(sp^{2.74}d^{0.03})_{\mathrm{Si}_1} + 0.8526(sp^{2.06})_{\mathrm{C}_3} \end{array}$	1.912 1.957				
(SiPh ₂) ₅						
$\begin{array}{c} Si_1 - Si_2 \\ Si_1 - C_6 \end{array}$	$\begin{array}{l} 0.7052(sp^{2.95}d^{0.02})_{\mathrm{Si}_1} + 0.7090(sp^{3.02}d^{0.02})_{\mathrm{Si}_2} \\ 0.5229(sp^{2.85}d^{0.03})_{\mathrm{Si}_1} + 0.8524(sp^{2.05})_{\mathrm{C_6}} \end{array}$	1.927 1.955				
(SiPh ₂) ₆						
$\begin{array}{c} Si_1 - Si_2 \\ Si_1 - C_4 \end{array}$	$\begin{array}{c} 0.7069(sp^{2.92}d^{0.02})_{\mathrm{Si}_1} + 0.7074(sp^{2.91}d^{0.02})_{\mathrm{Si}_2} \\ 0.5240(sp^{2.99}d^{0.03})_{\mathrm{Si}_1} + 0.8517(sp^{2.06})_{\mathrm{C}_4} \end{array}$	1.928 1.954				

Таблица 5. НСО-анализ для соединений $(SiPh_2)_n$ (n = 4-6)

Таблица 6. Значения натуральных зарядов атомов q_i в SiPh₄ и ряда (SiPh₂)_n (n = 4-6)

Атом	q_i, e^-			
11100	SiPh ₄	$(SiPh_2)_4$	$(SiPh_2)_5$	$(SiPh_2)_6$
Si	+1.842	+0.876	+0.874	+0.873
C _{Si}	-0.525	-0.500	-0.497	-0.497
C _C	-0.202	-0.227	-0.228	-0.230
Н	+0.210	+0.240	+0.240	+0.242

Как видно из табл. 5, соответствующие поляризационные коэффициенты в НСО для связей Si–Si и Si–C практически одинаковы для всех соединений. В случае связей Si–C происходит смещение электронной плотности в сторону атомов углерода, что обусловлено различной электроотрицательностью атомов Si (1.8) и C (2.5), входящих в состав молекул. Можно также отметить, что при переходе от (SiPh₂)₄ к (SiPh₂)₅ и (SiPh₂)₆ происходит увеличение заселенности для связей Si–Si от 1.91 до $1.95e^-$, а для электронных конфигураций гибридизированных орбиталей кремния происходит уменьшение их *p*-характера от $sp^{3.21}d^{0.02}$ до $sp^{2.95}d^{0.02}$.

В табл. 6 приведены рассчитанные заряды атомов q_i в исследованных молекулах. Изменение заряда на атоме кремния в ряду фенилциклосиланов мало, что обусловлено, как было показано выше, схожим электронным строением этих соединений. В то же время заряд на атоме кремния в тетрафенилсилане возрастает более чем в 2 раза от 0.88 до $1.84e^-$ по сравнению с циклофенилсиланами. Такое изменение зарядов коррелирует с экспериментально измеренным сдвигом $\Delta E SiK\alpha_{1,2}$ -спектров исследованных соединений относительно элементарного кремния, который составил 0.03 eV в фенилциклосиланах, а для SiPh₄ увеличивается до 0.17 eV.

5. Заключение

В ходе исследования электронного строения ряда фенилциклосиланов $(SiPh_2)_n$ (n = 4-6) методами рентгеновской эмиссионной спектроскопии и расчетов в приближении теории функционала плотности проведен анализ характеристик химических взаимодействий в этих соединениях. Валентные уровни фенилциклосиланов образуют протяженную структуру, расположенную в интервале энергий от -24.0 до -5.5 eV, о чем свидетельствуют диаграммы энергетических уровней МО. Исходя из деталей тонкой структуры рентгеновских эмиссионных SiK_{β1}-спектров и РПЭС установлено, что ВЗМО фенилциклосиланов образованы в результате σ -взаимодействия в кремниевых циклах и частично $p, d \pi$ -взаимодействия Si-Ph. В рамках анализа HCO показано, что при переходе от (SiPh₂)₄ к (SiPh₂)₅ и (SiPh₂)₆ происходит увеличение заселенности связей Si-Si от 1.912 до 1.928е⁻. Наблюдается уменьшение *р*-характера гибридизированных орбиталей кремния от $sp^{3.21}d^{0.02}$ до $sp^{2.95}d^{0.02}$. Полученные значения коротковолновых сдвигов максимумов SiKa_{1,2} коррелируют с увеличением рассчитанных значений эффективных зарядов на атомах кремния при переходе от SiPh₄ к фенилциклосиланам.

Список литературы

- M. Kumada, M. Ishikawa, H. Okinoshima. Ann.N.Y.Acad. Sci. 239, 32 (1974).
- [2] M. Ishikawa, M. Kumada. Adv. Organomet. Chem. 19, 51 (1981).
- [3] M.G. Steinmertz. Chem. Rev. 95, 1527 (1995).
- [4] Inorganic polymers / Eds R. West, J.E. Mark, H.R. Allcock. Prentice-Hall; Engelwood Cliffs, N.Y. (1992). Ch. 5, 6.
- [5] Silicon-containing polymers / Eds R.G. Jones. Royal Soc. Chem., London (1995).
- [6] R. West. Actual. Chim. 3, 64 (1986).
- [7] R.G. Kepler, J.M. Zeigler. In: Silicon-based polymer science. A comprehensive resource. Adv. Chem. Ser. V. 224 / Eds J.M. Zeigler, F.M. Gordon. Am. Chem. Soc., Washington, DC (1990). P. 459.
- [8] M.A. Abkovitz, M. Stolka, R.J. Weadley, K.M. Mc Grane, F.E. Knier. In: Silicon-based polymer science. A comprehensive resource. Adv. Chem. Ser. V. 224 / Eds J.M. Zeigler, F.M. Gordon. Am. Chem. Soc., Washington, DC (1990). P. 467.

- [9] H.A. Fogarty, D.L. Casher, R. Imhof, T. Schepers, D.W. Rooklin, J. Michl. Pure Appl. Chem. 75, 8, 999 (2003).
- [10] В.В. Семенов. Успехи химии 80,4, 335 (2011).
- [11] M.J.S. Coaxian. Organometallics 6, 1486 (1987).
- [12] R.W. Bigelow. Organometallics 5, 1502 (1986).
- [13] M.C. Paqueras, F. Orti, J.L. Bredas. Synth. Met. 42, 3457 (1991).
- [14] R. Crespo, M.C. Paqueras, F. Orti, F. Tomas. Synth. Met. 54, 173 (1993).
- [15] A.F.J. Sax. Comput. Chem. 6, 469 (1985).
- [16] B.T. Luke, J.A. Pople, M.B. Krogh-Jespersen, Y. Apeloig, J. Chandrasekhar, P.R. Schleyer. J. Am. Chem. Soc. 108, 260 (1986).
- [17] R. Janoschek, E. Hengge, H. Stuger, L. Nyulaszi. Monatsh. Chem. **122**, 31 (1991).
- [18] H. Bock, B. Solouki. In: The chemistry of organic silicon compounds / Eds S. Patai, Z. Rappoport. Wiley, N.Y. (1989). Ch. 9.
- [19] R. West. J. Organomet. Chem. 300, 327 (1986).
- [20] R.H. French, J.S. Meth, J.R.G. Thorne, R.M. Hochstrasser, R.D. Miller. Synth. Met. 50, 499 (1992).
- [21] Y. Apeloig. In: The chemistry of organosilicon compounds / Eds S. Patai, Z. Rappoport. Wiley, N.Y. (1989). Ch. 2.
- [22] R. West. In: The chemistry of organosilicon compounds / Eds S. Patai, Z. Rappoport. Wiley, N.Y. (1989). Ch. 19.
- [23] R. West. In: Ultrastructure processing of ceramics, glasses and composites / Eds L. Hench, D.L. Ulrich. Wiley, N.Y. (1984).
- [24] K. Takeda, H. Teramae, N. Matsumoto. J. Am. Chem. Soc. 108, 8186 (1986).
- [25] J.T. Nelson, W.J. Pietro. J. Phys. Chem. 92, 1365 (1988).
- [26] J.B. Lambert, J.L. Pflung, C.L. Stern. Angew. Chem., Int. Ed. Engl. 34, 98 (1995).
- [27] R.D. Miller, J. Michl. Chem. Rev. 89, 1359 (1989).
- [28] D.G.J. Sutherland, J.Z. Xiong, Z. Liu, T.K. Sham, G.M. Bancroft, K.M. Baines. Organometallics 13, 3671 (1994).
- [29] A.E. Jonas, G.K. Schweitzer, F.A. Grimm. J. Electron Spectrosc. Relat. Phenom. 1, 29 (1973).
- [30] W.B. Perry, W.L. Jolly. J. Electron Spectrosc. Relat. Phenom. 4, 219 (1974).
- [31] А.Т. Шуваев, М.М. Татевосян, В.М. Копылов, Н.Н. Харабаев. Теорет. и эксперим. хим. 20, 369 (1984).
- [32] М.М. Татевосян, В.Г. Власенко, Т.Н. Даниленко, О.В. Швачко. Тез. докл. VIII Междунар. конф. "Спектроскопия координационных соединений". Туапсе (2011). С. 133.
- [33] М.М. Татевосян, А.Т. Шуваев, А.П. Землянов. ЖСХ 18, 4, 684 (1977).
- [34] Т.Н. Даниленко, М.М. Татевосян, В.Г. Власенко. ЖСХ 53, 5, 916 (2012).
- [35] Т.Н. Даниленко, М.М. Татевосян, В.Г. Власенко. ФТТ 54, 10, 1971 (2012).
- [36] Т.Н. Даниленко, В.Г. Власенко, М.М. Татевосян. Фазовые переходы, упорядоченные состояния и новые материалы 6, 6 (2012).
- [37] K. Endo, S. Shimada, T. Ida, M. Suhara, E.Z. Kurmaev, A. Moewes, D.P. Chong. J. Mol. Struct. 17, 561 (2001).
- [38] А. Майзель, Г. Леонхардт, Р Сарган. Рентгеновские спектры и химическая связь. Наук. думка, Киев (1980). 420 с.
- [39] Л.Н. Мазалов. Рентгеновские спектры. ИНХ СО РАН, Новосибирск (2003). 329 с.
- [40] М.А. Блохин. Методы рентгеноспектральных исследований. Физматгиз, М. (1959). 386 с.

- [41] Gaussian 03, Revision A.1 / M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople. Gaussian, Inc., Pittsburgh PA, USA (2003).
- [42] C. Lee, W. Yang, R.G. Parr. Phys. Rev. B 37, 785 (1988).
- [43] A.D. Becke. J. Chem. Phys. 98, 5648 (1993).
- [44] A.D. Mc Lean, G.S. Chandler. J. Chem. Phys. 72, 5639 (1980).
- [45] K. Raghavachari, J.S. Binkley, R. Seeger, J.A. Pople. J. Chem. Phys. 72, 650 (1980).
- [46] M. Nag, P.P. Gaspar. Chem. Eur. J. 15, 8526 (2009).
- [47] Yun-qiao Ding, Qing-an Qiao, Peng Wang, Guo-wen Chen, Jian-jun Han, Qiang Xu, Sheng-yu Feng. Chem. Phys. 367, 167 (2010).
- [48] I. Pavel, K. Strohfeldt, C. Strohmann, W. Kiefer. Inorg. Chim. Acta. 357, 1920 (2004).
- [49] M. Alcolea Palafox, P.C. Gomez, L.F. Pacios. J. Mol. Struct. (Theochem). **528**, 269 (2000).
- [50] L. Parkanyi, K. Sasvari, I. Barta. Acta Cryst. B 34, 883 (1978).
- [51] L. Parkanyi, K. Sasvari, J.P. Declercq, G. Germain. Acta Cryst. B 34, 3678 (1978).
- [52] M. Drager, K.G. Walter. Z. Anorg. Allgem. Chem. 479, 65 (1981).
- [53] Л.Н. Мазалов. ЖСХ 44, 1, 7 (2003).
- [54] R.S. Mulliken. J. Chem. Phys. 23, 10, 1833 (1955).
- [55] R.S. Mulliken. J. Chem. Phys. 23, 12, 2338 (1955).
- [56] A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 2, 735 (1985).