05 Магнитодиэлектрический эффект в керамике Bi_{1/2}La_{1/2}MnO₃

© А.В. Павленко, А.В. Турик, Л.А. Резниченко, Л.А. Шилкина, Г.М. Константинов

Научно-исследовательский институт физики Южного федерального университета, Ростов-на-Дону Региональный филиал Центрального экспертного криминалистического таможенного управления, Ростов-на-Дону E-mail: turik@sfedu.ru

Поступило в Редакцию 18 июля 2012 г.

В широком интервале частот при температуре T = 80 K выполнены измерения магнитодиэлектрического эффекта в керамике $\text{Bi}_{1/2}\text{La}_{1/2}\text{MnO}_3$. Показано, что увеличение магнитной индукции приводит к монотонному увеличению действительной и монотонному уменьшению или увеличению (в зависимости от частоты измерительного электрического поля) мнимой части диэлектрической проницаемости. Обсуждается природа магнитодиэлектрического эффекта.

Вследствие большого различия температур сегнетоэлектрического $(T_{FE} = 750-770 \text{ K})$ и ферромагнитного $(T_{FM} = 105 \text{ K})$ фазовых переходов магнитодиэлектрический эффект (МДЭ) в манганите висмута ВіМпО₃ проявляется очень слабо (-0.6% при магнитной индукции B = 9 T [1,2]). Для увеличения МДЭ используют сближение температур T_{FE} и T_{FM} путем замещения части ионов Ві ионами La. Манганит лантана-висмута Ві_{1/2}La_{1/2}MnO₃ испытывает ферромагнитный фазовый переход при температуре $T_{FM} = 120 \text{ K} [3]$, и в нем можно ожидать достаточно сильный МДЭ. Количественной мерой МДЭ являются магнитодиэлектрический коэффициент MD и магнитоэлектрический коэффициент MD и магнитоэлектрический коэффициент ML, рассчитываемые по формулам

$$MD(B) = \frac{\varepsilon'(B) - \varepsilon'(0)}{\varepsilon'(0)}, \quad ML(B) = \frac{\varepsilon''(B) - \varepsilon''(0)}{\varepsilon''(0)}.$$
 (1)

Здесь $\varepsilon = \varepsilon' - i\varepsilon''$ — комплексная диэлектрическая проницаемость материала, ε' и ε'' — ее действительная и мнимая части, $\varepsilon(B)$ и $\varepsilon(0)$ —

47

диэлектрические проницаемости, измеренные в переменном электрическом поле с круговой частотой $\omega = 2\pi f$ и напряженностью *E* в присутствии и в отсутствие постоянного магнитного поля с напряженностью *H* и индукцией *B*.

Согласно Каталану [4], МДЭ может быть следствием сочетания магнетосопротивления и максвелл-вагнеровской (МВ) поляризации. В модели [4] предполагается, что границы зерен (прослойки) и/или слои между образцом и электродами могут обладать проводимостями γ_1 , существенно отличающимися от проводимостей γ_2 зерен керамики. Зависимость этих проводимостей от магнитного поля и приводит к изменениям ε вследствие МВ-поляризации. Удельная проводимость γ такого композита рассчитывается по измеренным ε' и ε'' по формуле $\gamma = \gamma' + i\gamma'' = i\omega\varepsilon_0\varepsilon = \omega\varepsilon_0(\varepsilon'' + i\varepsilon')$, где $\gamma' = \omega\varepsilon_0\varepsilon''$ и $\gamma'' = \omega\varepsilon_0\varepsilon' -$ действительная и мнимая части γ , ε_0 — электрическая постоянная. Такая же формула используется для связи γ_1 и ε_1 прослоек и γ_2 и ε_2 зерен керамического образца.

Синтез образцов керамики Ві_{1/2}La_{1/2}MnO₃ осуществляли методом твердофазных реакций из оксидов Ві₂O₃, Mn₂O₃, La₂O₃ обжигом в две стадии (с промежуточным помолом) при температурах $T_1 = 1173$ К и $T_2 = 1273$ К и временах выдержки $\tau_1 = 10$ h и $\tau_2 = 2$ h. Спекание керамики Ві_{1/2}La_{1/2}MnO₃ проводилось при температуре 1293 К в течение 2 h. Фазовый состав и полноту синтеза проверяли при помощи рентегнофазового анализа. Прецизионные рентгеноструктурные исследования выполняли на измельченных керамических спеках на дифрактометре ДРОН-3. Исследование микроструктуры (зеренного строения) образцов проводили на электронном сканирующем микроскопе Hitachi TM-1000.

Рентгенографический анализ показал, что получены беспримесные однофазные керамические образцы, имеющие при комнатной температуре структуру, близкую к кубической (вследствие малости искажения кубической решетки точно определить симметрию ячейки не удалось), с параметром ячейки a = 3.900 Å.

На рис. 1 представлен фрагмент микроструктуры скола исследуемой керамики. Хорошо видно, что структура мелкозернистая, с размером зерен $3-12\,\mu$ m. Форма зерен — многогранники, но границы не плоские и при малых размерах зерен их топология близка к шаровидной. Скол керамики проходит преимущественно по зерну, что свидетельствует о меньшей прочности самого зерна по сравнению с межзеренной

Рис. 1. Фрагмент микроструктуры скола керамики Bi_{1/2}La_{1/2}MnO₃.

прослойкой. Характер поверхности, образующейся при сколе, свидетельствует о неоднородности состава по зерну (границы зерен более светлые, чем объем; присутствуют впадины и границы раздела внутри и т.д.). Видно также, что на сколе керамики имеются кроме светлых зерен основной фазы темные включения с повышенным содержанием Mn, объемная доля которых составляет менее 2% и выявить которые рентгенографически не удалось.

Для измерения МДЭ образец помещался между полюсами магнита в специальную теплоизолированную камеру, в которую наливалось около 4 литров жидкого азота. По мере охлаждения камеры жидкий азот закипал и испарялся, вследствие чего приходилось доливать его до тех пор, пока камера полностью не охладится и азот не перестанет кипеть. После этого в камеру с азотом опускался держатель

образца, состоящий из керамической трубки диаметром 4 mm и высотой 300-400 mm с двумя полостями по всей длине, на конце которой находилась цилиндрическая медная колба с измеряемым образцом. Держатель образца и камера были сделаны так, чтобы медная колба все время находилась в азоте, а образец располагался посредине между полюсами магнита; при этом электрическое и магнитные поля были параллельны. К серебряным электродам образца были подведены серебряные контакты, проходившие внутри керамической трубки и подключенные к LCR-метру Agilent 4980A. Измерения диэлектрических проницаемостей $\varepsilon(0)$ в отсутствие $\varepsilon(B)$ в присутствии постоянной магнитной индукции $B = \mu \mu_0 H = 0.85 \,\mathrm{T}$ ($\mu \cong \mu_0 = 4\pi \cdot 10^{-7} \,\mathrm{H/m}$ магнитная проницаемость) проводились на механически свободных образцах диаметром 11 mm и толщиной 1 mm при напряженности электрического поля E = 1 V/mm через $2-3 \min$ после охлаждения образца, когда наступала стабилизация диэлектрических параметров. На рис. 2 и 3 приведены результаты исследования МДЭ в керамике $Bi_{1/2}La_{1/2}MnO_3$ при T = 80 K в диапазоне частот $f = 20 - 2 \cdot 10^6 \text{ Hz}.$

В отличие от [5], где измерения проводились в режиме медленного (со скоростью 2 K/min) охлаждения и нагревания, в данной работе фактически использовался режим закалки (охлаждение образца от комнатной температуры до температуры кипения жидкого азота за 2-3 min). В режиме закалки переход в ферромагнитную фазу, сопровождающийся значительным увеличением удельной проводимости γ , не успевает произойти во всем объеме керамики.

Полученная нами керамика при низких температурах характеризовалась большой проводимостью на постоянном токе ($\gamma \sim 10^{-6} (\Omega \cdot m)^{-1}$), положительным магниторезистивным эффектом и небольшой относительной диэлектрической проницаемостью ($\varepsilon'/\varepsilon_0 \sim 3 \cdot 10^2$), что приводило к сильному МДЭ. Низкий и широкий максимум мнимой части диэлектрической проницаемости ε'' на частоте релаксации $f_r = (2.5-3) \cdot 10^3$ Hz (рис. 2, *a*) свидетельствует о недебаевском характере диэлектрического спектра. Еще более типичным для недебаевских процессов является то обстоятельство [6], что средняя частота релаксации проводимости значительно (более чем на два порядка, см. максимумы γ'' на рис. 2, *b*) превышает частоту релаксации диэлектрического веса релаксационных процессов с малыми временами релаксации.

Рис. 2. Частотные зависимости $\varepsilon'/\varepsilon_0$ и $\varepsilon''/\varepsilon_0$ (*a*) и γ' и γ'' (*b*) керамики $\operatorname{Bi}_{1/2}\operatorname{La}_{1/2}\operatorname{MnO}_3$ при температуре 80 К (ε_0 — проницаемость вакуума). Кривые γ'' приведены после исключения сингулярной (расходящейся при $\omega \to \infty$) части.

Рис. 3. Зависимости MD и ML керамики $Bi_{1/2}La_{1/2}MnO_3$ при температуре 80 K от магнитной индукции *B* на частотах $f = 10^3$ Hz и $3 \cdot 10^3$ Hz. Стрелками показаны направления изменения *B*.

При любых частотах f магнитодиэлектрический коэффициент MD > 0. При изменении частоты f измерительного электрического поля MD имеет максимум при $f \to f_r$ (рис. 2, a). Такое поведение может быть связано с резким уменьшением действительной части диэлектрической проницаемости ε' вблизи релаксационной частоты. Это подтверждает мнение авторов [2] о динамическом усилении МДЭ вследствие управляемой магнитным полем диэлектрической релаксации, которая может быть обусловлена МВ-поляризацией. Более сложное поведение характерно для ML. Как видно из рис. 2, a и 3, при прохождении через релаксационную частоту ML изменяет знак: ML < 0 при $f < f_r$ и ML > 0 при $f > f_r$. Наименьшая величина $|ML| \approx 0$ наблюдается вблизи максимума ε'' , т.е. в окрестности частоть релаксации f_r . Сопровождается резким уменьшением МДЭ на частоте релаксации f_r сопровождается резким уменьшением магнитоэлектрического коэффициента диэлектрических потерь.

Проверка методики измерений МДЭ проводилась на антиферромагнетиках и ряде объектов, не обладающих магнитными свойствами. Во всех этих случаях МДЭ отсутствовал. Полученные результаты целесообразно использовать при разработке и создании новых мультифункциональных керамических материалов, обладающих высоким магнитодиэлектрическим эффектом.

Работа выполнена при финансовой поддержке ГК № 16.513.11.3032.

Список литературы

- [1] Звездин А.К., Пятаков А.П. // УФН. 2004. Т. 174. С. 465.
- [2] Yang C.-H., Lee S.-H., Koo T.Y. et al. // Phys. Rev. B. 2007. V. 75. P. 140 104(R).
 [3] Ogawa T., Sandhu A., Chiba M. et al. // J. Magn. Magn. Mater. 2005. V. 290–291. P. 933.
- [4] Catalan G. // Appl. Phys. Lett. 2006. V. 88. P. 102 902.
- [5] Павленко А.В., Турик А.В., Куприна Ю.А. и др. // Экология промышленного производства. 2012. № 2. С. 61.
- [6] Турик А.В., Богатин А.С., Андреев Е.В. // ФТТ. 2011. Т. 53. С. 2299.