01;06

Щели в спектре эпитаксиального графена, сформированного на политипах карбида кремния

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: Sergei_Davydov@mail.ru

Поступило в Редакцию 13 сентября 2012 г.

В задаче в качестве подложек рассмотрены политипы NH карбида кремния с N = 2, 4, 6, 8. Плотность состояний подложек описывается моделью Халдейна—Андерсона. Показано, что использование модели Халдейна—Андерсона всегда приводит к появлению в спектре графена двух щелей, примыкающих по энергии к валентной зоне и зоне проводимости субстрата. Ширина щелей диктуется отношением энергии взаимодействия атомов в свободном однослойном графене к взаимодействию атома графена с подложкой. Если это отношение крайне мало, щели в сумме могут перекрывать практически весь энергетический интервал запрещенной зоны подложки, если же, наоборот, чрезвычайно велико, то щели сжимаются до исчезающе малой ширины.

Исследования эпитаксиального графена интенсивно развиваются [1–5], так как именно такие структуры способны выступать как элементы наносистем. Отсюда следует, что вопросы взаимодействия листа графена с подложкой крайне важны. Среди характеристик однослойного эпитаксиального графена одной из основных является наличие или отсутствие щели в электронном спектре, отсутствующей у однолистного графена. Наличие такой щели с управляемой, по возможности, шириной является залогом успешного применения графена в приборных структурах.

Задача о щели Δ , наведенной в спектре графена полупроводниковой подложкой, рассматривался нами в [6] в рамках модельного подхода. Однако в этой работе не поднимался вопрос о связи величины Δ с шириной запрещенной зоны подложки E_g . Для исследования зависимости $\Delta(E_g)$ наилучшими подложками с экспериментальной точки зрения являются гексагональные политипы карбида кремния NH, где N = 2, 4, 6, 8.

7

Дело в том, что использование политипов 6*H*-SiC и 4*H*-SiC в качестве подложки позволяет получать графен путем термодесорбции атомов Si с его поверхности (см. [1–5] и многочисленные ссылки, приведенные там). Рассмотрим, как обстоит дело с теоретической точки зрения.

Для описания полупроводниковой подложки весьма удобна простая модель Халдейна—Андерсона [7], в которой с учетом поставленной задачи о разных политипах энергетическая плотность состояний $\rho_s(\omega)$, где ω — энергетическая переменная, задается в виде $\rho_s(\omega) = \rho_s$ для $|\omega - E_0| \ge E_g/2$ и $\rho_s(\omega) = 0$ для $|\omega - E_0| < E_g/2$, где $E_0 = \chi + E_g/2$ — центр запрещенной зоны относительно вакуума, χ — электронное сродство политипа карбида кремния.

Отметим прежде всего, что в этой модели игнорируется различие плотностей состояний зоны проводимости ρ_{sc} и валентной зоны ρ_{sv} : обе плотности состояний описываются полубесконечными ступеньками одинаковой высоты. Таким образом, если при переходе от политипа к политипу отличия соответствующих плотностей состояний не превышают существенно разность $\delta = |\rho_{sc} - \rho_{sv}|$, то можно пользоваться моделью Халдейна–Андерсона в ее исходно-простой форме. Такая возможность подтверждается и расчетами зонной структуры политипов SiC [8], где показано, что модельные плотности состояний $\rho_{sc,v} \propto \sqrt{\omega - E_{C,V}}$ ($E_{C,V}$ — края зоны проводимости и валентной зоны) для 6H-SiC и 4H-SiC политипов отличаются крайне мало (см. также справочник [9]).

Плотность состояний эпитаксиального графена $\rho_{g}(\omega)$ имеет следующий вид [6]:

$$\rho_{g}(\omega) = \frac{1}{\pi\xi^{2}} \left[\Gamma(\omega) \ln \frac{(\overline{\Omega} \mp \xi)^{2} + \Gamma^{2}(\omega)}{\overline{\Omega}^{2} + \Gamma^{2}(\omega)} + 2\overline{\Omega} \left(\arctan \frac{\overline{\Omega}}{\Gamma(\omega)} - \arctan \frac{\overline{\Omega} \mp \xi}{\Gamma(\omega)} \right) \right].$$
(1)

Здесь $\Gamma(\omega) = \pi V^2 \rho_s(\omega)$, где V — матричный элемент взаимодействия графен-субстрат;

$$\Lambda(\omega) = \frac{\Gamma}{\pi} \ln \left| \frac{\omega - E_0 - E_g/2}{\omega - E_0 + E_g/2} \right|$$

где $\Gamma = \pi V^2 \rho_s$; верхний знак относится к π^* -зоне графена ($\overline{\Omega} \equiv \Xi \Omega - \Lambda(\omega) > 0$), нижний — к π -зоне графена ($\overline{\Omega} < 0$), причем

 $\Omega = (\omega - E_0) - (\varepsilon_a - E_0)$ и энергия ε_a является точкой Дирака; $\xi \equiv 3ta_0q_B/2$, где q_B — вектор обрезания, t — энергия перехода электрона между ближайшими углеродными атомами графена, находящимися на расстоянии a_0 друг от друга.

В предстоящем анализе будет удобнее изменить шкалу энергий, осуществив переход к $\omega' = \omega - E_0$. При этом энергия ε_a превращается в $\varepsilon'_a = \varepsilon_a - E_0$. Такая трансформация означает, что если вначале мы имели неподвижную энергетическую диаграмму для графена, относительно которой смещались энергетические диаграммы различных политипов SiC, то теперь, наоборот, диаграмма для подложки является неизменной, а точка Дирака смещается от политипа к политипу. В дальнейшем штрихи у ω' и ε'_a будем опускать.

Рассмотрим область энергий, соответствующих запрещенной зоне подложки, т.е. $-E_g/2 < \omega < E_g/2$. В этой области $\Gamma(\omega) = 0$, так что выражение (1) переходит в

$$\rho_g(\omega) = \frac{2\overline{\Omega}}{\pi\xi^2} \left(\operatorname{arctg} \frac{\overline{\Omega}}{s} - \operatorname{arctg} \frac{\overline{\Omega} \mp \xi}{s} \right), \qquad (2)$$

где $s = 0^+$. Значение плотности состояний эпитаксиального графена $\rho_g(\omega)$ обращается в нуль при условии выполнения неравенства $\overline{\Omega}(\overline{\Omega} \mp \xi) > 0$, где знак минус относится к случаю $\overline{\Omega} > 0$, знак плюс к $\overline{\Omega} < 0$. Таким образом, при $\overline{\Omega} > 0$ условием выполнения неравенства является $\overline{\Omega} > \xi$, в обратном же случае $\overline{\Omega} < 0$ условие выполняется при $\overline{\Omega} < -\xi$. Объединяя два этих случая, получим окончательное неравенство, эквивалентное (3), в виде $|\overline{\Omega}| > \xi$ или $|\omega - \varepsilon_a - \Lambda(\omega)| > \xi$.

Обсудим теперь значение параметра ε_a для различных политипов, который мы можем представить в виде $\varepsilon_a = \phi_g - \chi - E_g/2$, где ϕ_g — работа выхода свободного графена. Экстраполяционная схема определения сродства к электрону $\chi(NH)$ для NH политипов SiC была разработана нами в [10] и свелась к соотношению (вариант 1)

$$\chi(NH) = \chi(3C) - aD, \tag{3}$$

где $\chi(3C) = 4 \text{ eV}$ — электронное сродство для кубического политипа, a = 1.67 eV — коэффициент, $D = n_c/(n_c + n_h)$ — степень гексагональности, равная 0 для кубического политипа и 1 для чисто гексагонального политипа 2*H* (n_c и n_h — числа кубических и гексагональных узлов

Политип	8 <i>H</i>	6 <i>H</i>	4 <i>H</i>	2H
D	0.25	0.33	0.50	1
E_g , eV	2.86	3.00	3.23	3.33
χ, eV Вариант 1	3.58	3.45	3.17	2.33
ε_a , eV Вариант 1	0.10	0.16	0.33	1.12
χ, eV Вариант 2	3.57	3.44	3.24	3.20
ε_a , eV Вариант 2	0.11	0.17	026	0.25
δ_+ Вариант 1	0.26	0.23	0.22	0.08
δ_ Вариант 1	0.29	0.30	0.35	0.47
	-			

Исходные данные и результаты расчета энергии ε_a

решетки данного политипа). Принимая $\phi_g = 5.11 \, {\rm eV}$ [11], получим значения ε_a , представленные в таблице.

В варианте 1 для вычисления электронного сродства использовались экспериментальные данные по разрыву зон проводимости на гетеропереходах 3C/NH. В варианте 2, представленном также в [10], использовались данные по разрыву валентных зон. В этом последнем варианте

$$\chi(NH) = \chi(3C) + bD - \Delta E_g, \tag{4}$$

где $\Delta E_g = E_g(NH) - E_g(3C)$, b = 0.13 eV — коэффициент. Данные по варианту 2 также представлены в таблице. Из таблицы следует, что при переходе от политипа 8*H* к политипу 4*H* энергия ε_a возрастает как по варианту 1, так и по варианту 2. При переходе же от 4*H* к 2*H* значение ε_a по варианту 1 резко увеличивается, тогда как по варианту 2 слегка (на 0.1 eV) убывает.

Для дальнейшего анализа удобно перейти к безразмерным единицам. В [6] за единицу энергии принималось значение $E_g/2$, здесь же в качестве таковой удобнее принять параметр Г. Введем $y = \omega/\Gamma$, $e_g = E_g/2\Gamma$, $\lambda(y) = \pi^{-1} \ln |(y - e_g)/(y + e_g)|$, $\eta = \varepsilon_a/\Gamma$, $\bar{\xi} = \xi/\Gamma$. Тогда условие отсутствия щели есть $|y - \eta - \lambda(y)| > \bar{\xi}$.

Рис. 1. К решению неравенства (7): зависимость отношения $|\overline{\Omega}|/\Gamma$ от безразмерной энергии у для политипов 8*H* (*a*) и 2*H* (*b*) при $\Gamma = 1 \text{ eV}$ и $\bar{\xi} = 1$. Штриховыми линиями обозначены края запрещенной зоны подложки $\pm e_g$.

Схема определения щелей для политипов 8Н (а) и 2Н (b) представлена на рис. 1 (вариант 1). Из рис. 1 следует, во-первых, что имеются две щели, одна из которых (Δ_{-}) примыкает к валентной зоне, а другая (Δ_{+}) — к зоне проводимости. Во-вторых, резкое (более чем на порядок) увеличение энергии ε_a не ведет к каким-либо качественным изменениям. Так, на рис. 1, а имеет место почти симметричный случай (полной симметрии отвечает условие $\varepsilon_a = 0$), на рис. 1, *b* — асимметричный случай. На рис. 2 показано изменение ширины щелей Δ_- и Δ_+ при переходе от политипа к политипу (вариант 1). Для ширины щели Δ_{-} наблюдается заметный рост с увеличением степени гексагональности подложки. В случае щели Δ_+ при переходе от политипа 8*H* к политипу 4Н ширина щели остается практически постоянной, а при переходе от 4Н к 2Н ощутимо уменьшается. Нетрудно, однако, сообразить, что при расчете по варианту 2 "аномалии" перехода $4H \rightarrow 2H$, демонстрируемые рис. 2, исчезают. Значения относительных ширин щелей $\delta_{\pm} = \Delta_{\pm}/E_g$, представленные в таблице (вариант 1), демонстрируют ту же тенденцию, что и абсолютные значения, представленные на рис. 2.

Перейдем теперь к обсуждению роли параметра $\bar{\xi} = \xi/\Gamma$, описывающего отношение взаимодействия атомов графена между собой к

Рис. 2. Ширины щелей Δ_- и Δ_+ для различных политипов карбида кремния, вычисленные по варианту 1; $\Gamma = 1 \text{ eV}$ и $\overline{\xi} = 1$.

взаимодействию атома графена с подложкой. Будем, как и в работе [6], говорить о режиме сильной связи графена с подложкой при $\bar{\xi} \ll 1$ и о режиме слабой связи при $\bar{\xi} \gg 1$.

Из рис. 1 легко понять, что с уменьшением $\bar{\xi}$ обе щели расширяются. При $\bar{\xi} \ll 1$ щели почти сливаются, так что можно говорить об одной щели, содержащей, однако, узкую полосу разрешенных состояний. Наоборот, с ростом $\bar{\xi}$ щели сужаются и локализуются у краев соответствующих зон. В случае $\bar{\xi} \gg 1$, когда параметр $\bar{\xi}$ становится самой большой величиной задачи, щели сужаются до исчезающе малой величины $\sim E_g \exp(-\pi\bar{\xi})$.

Здесь уместно заметить, что такие щели возникают в результате логарифмических расходимостей функции $\lambda(y) = \pi^{-1} \ln[(e_g - y)/(e_g + y)]$ при $y \to \pm e_g$. Сами же эти расходимости являются следствием наличия скачков $\rho_s(\omega)$ в модели плотности состояний Халдейна–Андерсона.

При использовании более реалистичной плотности состояний подложки модуль функции $\lambda(\pm e_g)$ приобретает максимальное, но конечное значение. Так, например, если принять $\rho_{sc} \propto \sqrt{\omega - E_C}$ и $\rho_{sv} \propto \sqrt{E_V - \omega}$ [8], то можно показать, что в области запрещенной зоны $\lambda(y) \propto (\sqrt{e_g - y} - \sqrt{e_g + y})$. Тогда, при увеличении $\bar{\xi}$ возникает ситуация, когда $\bar{\xi}$ становится больше, чем $|\pm e_g - \varepsilon_a - \lambda(\pm e_g)|$, и щель исчезает. В симметричном случае обе щели исчезнут одновременно. В асимметричном случае при $\varepsilon_a > 0$ (рис. 2) сперва схлопывается щель Δ_+ , а потом (при дальнейшем увеличении $\bar{\xi}$) щель Δ_- . Таким образом, в модели без скачков в зависимости от соотношений параметров задачи могут существовать одна или две щели, а также реализоваться бесщелевое состояние. При этом режим слабой связи можно отнести к случаю квазисвободного графена (quasi-standing graphene), тогда как случай сильной связи уместно сопоставить буферному слою (buffer layer) (см. [6] и ссылки, приведенные там). Отметим также, что имеющиеся расчеты для однолистного графена, сформированного на SiC, дают сильный разброс значений щелей (0.15 eV [12], 0.22 eV [13], 0.3 eV [14], 1 eV [15]), что по порядку величины вполне соответствует рассмотренной нами модели.

Работа выполнена в рамках программ президиума РАН "Квантовая физика конденсированных сред" и "Основы фундаментальных исследований нанотехнологий и наноматериалов" и поддержана грантами РФФИ (проекты № 11-02-00662а и 12-02-00165а).

Список литературы

- Castro Neto A.H., Guinea F., Peres N.M.P., Novoselov K.S., Geim A.K. // Rev. Mod. Phys. 2008. V. 81. N 1. P. 109–162.
- [2] Cooper D.R., D'Anjou B., Ghattamaneni N., Harack B., Hilke M., Horth A., Majlis N., Massicotte M., Vandsburger L., Whiteway E., Yu V. // arXiv: 1110.6557.
- [3] Haas J., de Heer W.A., Conrad E.H. // J. Phys. C: Condens. Matter. 2008. V. 20. P. 323 202.
- [4] de Heer W.A., Berger C., Wu X., Sprinkle M., Hu Y., Ruan M., Stroscio J.A., Eirst P.N., Haddon R., Piot B., Faugeras C., Potemski M., Moon J.-S. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 374 007.

- [5] Seyller Th., Botswick A., Emtsev K.V., Horn K., Ley L., McChestney J.L., Ohta T., Riley J.D., Rotenberg E., Speck F. // Phys. Stat. Sol. (b). 2008. V. 245. N 7. P. 1436–1446.
- [6] Давыдов С.Ю. // ФТТ. 2013. Т. 47. В. 1. С. 97–106.
- [7] Haldane F.D.M., Anderson P.W. // Phys. Rev. B. 1976. V. 13. N 6. P. 2553–2559.
- [8] Persson C., Lindefelt U. // Materials Science Forum Vols. 1998. V. 264–268.
 P. 275–278.
- [9] Goldberg Yu., Levinshtein M.T., Rumyantsev S.L. // Properties of Advance Semiconductor Materials GaN. AIN, BN, SiGe / Eds Levinshtein M.E., Rumyantsev S.L., Shur M.S. Wiley, N.Y., 2001. P. 93–148.
- [10] Давыдов С.Ю. // ФТТ. 2007. Т. 41. В. 6. С. 718–720.
- [11] Mattausch A., Pankratov O. // Phys. Rev. Lett. 2007. V. 99. P. 076 802.
- [12] Jayasekera Th., Xu S., Kim K.W., Nardelli M.B. // Phys. Rev. B. 2011. V. 84. P. 035 442.
- [13] Vitali L., Riedl C., Ohmann R., Brihuega I., Starke U., Kern K. // Surf. Sci. 2008. V. 602. P. L127–L130.
- [14] Pankratov O., Hensel S., Bocksstedte M. // arXiv: 1009. 2185.
- [15] Goler S., Coletti C., Pellegrini V., Emtsev K.V., Starke U., Beltram F., Heun S. // arXiv: 1111. 4918.