01;05 Моделирование роста GaN нитевидных нанокристаллов на кремнии

© В.Г. Дубровский, М.А. Тимофеева

Санкт-Петербургский академический университет Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: timofeeva_m@list.ru

Поступило в Редакцию 11 сентября 2012 г.

Представлено развитие кинетической модели роста самоиндуцированных GaN нитевидных нанокристаллов (ННК) в вертикальном и латеральном направлениях. Построена модель, позволяющая описать эволюцию длины и радиуса ННК во времени. Проведено сопоставление результатов моделирования с экспериментальными данными по временны́м зависимостям длины и радиуса GaN HHK, выращенных на аморфных подслоях Si_xN_y на подложках кремния, и показано их хорошее соответствие. Определены условия, при которых длина и радиус HHK являются степенными функциями времени, а длина HHK обладает скейлинговой суперлинейной зависимостью от радиуса.

В настоящее время наблюдается большой интерес к исследованию процессов формированиия физических свойств полупроводниковых нитевидных нанокристаллов (ННК) [1-3]. ННК представляют собой анизотропные, непланарные структуры диаметром порядка нескольких десятков нанометров и длиной до десятков микрон [1-3]. ННК выращиваются различными эпитаксиальными методами, в частности методом молекулярно-пучковой эпитаксии (МПЭ) [3]. ННК на основе III-нитридов являются весьма перспективными структурами для создания различных оптоэлектронных приборов на кремниевых подложках: светоизлучающих диодов, лазеров и фотодетекторов [4-6]. В отличие от каталитических ННК, выращиваемых по механизму "пар-жидкость-кристалл" [1-3, 7-9], самоиндуцированные GaN ННК образуются из трехмерных островков Фольмера-Вебера, формирующихся на поверхности на начальном этапе осаждения [10-12]. Рост методом МПЭ осуществляется на подложках Si(111), предварительно покрытых либо решеточно-рассогласованным слоем AlN [10], либо аморфным слоем Si_xN_y толщиной $\sim 2 \text{ nm}$ [11,12]. В последнем случае практически отсутствует эпитаксиальная связь с подложкой, поэтому

61

можно не учитывать процесс релаксации напряжений, вызванных рассогласованием решеток.

Данная статья посвящена развитию теоретической модели роста GaN HHK на аморфных подслоях методом МПЭ [13,14] и исследованию зависимости морфологии HHK от времени роста. В работе [13] была установлена степенная зависимость длины GaN HHK от радиуса (скейлинг-эффект). Модель [13] является, однако, приближенной, так как не учитывает вклада в скорость роста за счет прямого попадания материала на вершину HHK. При МПЭ росте GaN HHK диффузионная длина адатомов Ga на боковой поверхности λ (порядка 40–50 nm [14–16]) составляет величину, сравнимую с типичным диаметром верхней грани HHK. Это обусловливает необходимость рассмотрения вклада в вертикальный рост Ga HHK от прямого потока Ga

Перечисли основные процессы, рассматриваемые в рамках предлагаемой модели:

— адсорбция атомов на боковой поверхности ННК и на вершине ННК;

— десорбция адатомов с вершины ННК;

— диффузия адатомов с боковой поверхности ННК и встраивание на вершину.

Будем обозначать через L_0 и R_0 соответственно длину и радиус ННК по истечении инкубационного времени t_0 , которое соответствует началу роста ННК из трехмерного островка, а через L и R — длину и радиус ННК в текущий момент времни t. Предполагаем цилиндрическую геометрию ННК. Процесс роста при существенном (в несколько раз) превышении потока азота является Ga-лимитированным. Длина ННК увеличивается за счет прямого попадания атомов Ga из молекулярного пучка на вершину ННК и за счет диффузии адатомов по боковым граням на вершину ННК. Вертикальная скорость роста ННК определяется из соображений материального баланса [3,13]:

$$\frac{\pi R^2}{\Omega} \frac{dL}{dt} = \left(\frac{\chi_f J \sin \varphi}{\pi} - J_{top}\right) 2\pi R\lambda + (\chi_{top} J \cos \varphi - J_{des})\pi R^2.$$
(1)

Левая часть уравнения описывает расход материала за счет удлинения ННК, где Ω — элементарный объем в твердой фазе. Первое слагаемое в правой части (1) дает диффузионный вклад с площади $2\pi R\lambda$, J — поток Ga, падающий под углом φ к поверхностной нормали, χ_f —

коэффициент адсорбции на боковых гранях. Величина J_{top} описывает обратный поток с вершины ННК на боковые грани [17]. Второе слагаемое дает вклад за счет прямого попадания на вершину ННК, где χ_{top} — коэффициент адсорбции на вершине ННК, а J_{des} — десорбционный поток [14,18].

Латеральный рост ННК начинается при $L > L_0$, таким образом, площадь боковой поверхности, доступной для встраивания, есть $2\pi R(L - \lambda) \cong 2\pi RL$. Обозначив через ψ процент атомов Ga, которые могут встроиться на боковой грани ННК, скорость латерального роста можно представить в виде [13]

$$\frac{2\pi RL}{\Omega}\frac{dR}{dt} = \left(\frac{\chi_f J \sin \varphi}{\pi} - J_{SW}\right) 2\pi RL\psi.$$
(2)

Здесь J_{SW} есть десорбционный поток с боковых стенок. Обозначив $V = \Omega J \cos \varphi$, $a = (2\chi_f g_f \lambda \tan \varphi)/\pi$, $c = \chi_{top} g_{top}$, $B = (\chi_f g_{SW} \tan \varphi)/\pi$, $g_f = 1 - (\pi J_{top})/(\chi_f J \sin \varphi)$, $g_{top} = 1 - J_{des}/(\chi_{top} J \cos \varphi)$ и $g_{SW} = 1 - (\pi J_{SW})/(\chi_f J \sin \varphi)$, сведем уравнения (1) и (2) к виду

$$\frac{1}{V}\frac{dL}{dt} = \frac{a}{R} + c; \tag{3}$$

63

$$\frac{1}{V}\frac{dR}{dt} = \frac{b}{L},\tag{4}$$

где $b = (2\chi_f g_{SW}\lambda \tan \varphi)/\pi$. При выводе (4) учтены результаты работы [13], показывающие, что скорость латерального роста обратно пропорциональна длине ННК в результате двух эффектов: бокового роста за счет движения ступеней от основания до вершины ННК и затенения данного ННК ближайшими соседями.

Аналитическое решение системы уравнения (3) и (4) позволяет определить связь между R(t) и L(t):

$$\frac{c}{a}\exp\left(\frac{C_1}{a}\right)\left(L(t)\right)^{b/a} = \frac{c}{a}R(t)\exp\left(\frac{c}{a}R(t)\right),\tag{5}$$

где C_1 — константа, определяемая начальными условиями $L(t_0) = L_0$ и $R(t_0) = R_0$:

$$C_1 = a \ln \left(e^{(c/a)R_0} L_0^{-b/a} R_0 \right).$$
(6)

Рис. 1. Зависимость длины ННК от радиуса: 1 — теоретическая зависимость [13], учитывающая только диффузионный вклад в скорость вертикального роста (c = 0), 2 — общая теоретическая зависимость данной работы, 3 — теоретическая зависимость, учитывающая только адсорбционный вклад (a = 0), 4 – экспериментальные результаты [13].

Таким образом, зависимость L от R имеет вид

$$L = L_0 \left(\frac{R}{R_0}\right)^{a/b} \exp\left(\frac{c}{b}(R - R_0)\right).$$
(7)

При c = 0, т.е. пренебрегая вкладом за счет прямого потока Ga на вершину ННК, полученная зависимость сводится к результату [13]:

$$L = L_0 \left(\frac{R}{R_0}\right)^{a/b}.$$
(8)

При a = 0 (в отсутствие диффузионного вклада) зависимость (7) будет иметь вид

$$L = \exp\left(\frac{c}{b}(R - R_0)\right).$$
(9)

Очевидно, в первом случае имеет место скейлинговая степенная зависимость длины ННК от радиуса, а во втором — экспоненциальная.

65

Рис. 2. Зависимости радиуса GaN ННК от времени роста: *1* — теоретическая зависимость при чисто диффузионном росте [13], *2* — общая теоретическая зависимость, *3* — экспериментальные результаты [13].

Рис. 3. Зависимость длины GaN ННК от времени роста. Обозначения те же, что на рис. 2.

На рис. 1 представлены результаты сопоставления теоретической зависимости L(R) с приближенной моделью [13] и экспериментальными результатами по росту GaN ННК методом МПЭ на поверхности Si(111), покрытой аморфным слоем Si_xN_y [12,13]. Экспериментальные точки получены при следующих условиях роста: температура поверхности 780°С, поток N = 0.28 nm/s, поток Ga составляет 0.045 nm/s. Используя полученную связь между L и R в данный момент времени, на основе (3), (4) можно также найти зависимости L(t) и R(t). Подставляя соотношение (7) в дифференциальное уравнение (4), получаем

$$\frac{dR}{dt} = bV\left(\frac{R_0}{R}\right)^{a/b} \left(-\frac{c}{b}(R-R_0)\right).$$
(10)

Интегрирование этого уравнения с учетом начальных условий дает связь между *R* и *t* в виде трансцендентного уравнения

$$\frac{b}{c}L_0\left(-\frac{c}{b}R_0\right)^{a/b}\left[\Gamma\left(\frac{a+b}{b},-\frac{c}{b}R\right)-\Gamma\left(\frac{a+b}{b},-\frac{c}{b}R_0\right)\right]=bV(t-t_0),$$
(11)

где $\Gamma(a,z) = \int_{z}^{\infty} t^{a-1} e^{-t} dt$ — неполная гамма-функция.

На рис. 2 представлены результаты численного решения (11), наложенные на экспериментальную зависимость длины ННК от времени из работы [13], в сравнении с упрощенной моделью [13]. Значения параметров модели таковы: a = 40.3, b = 24.7, c = 0.8, V = 0.045 nm/s. На рис. 3 приведена соответствующая теоретическая зависимость для радиуса ННК от времени, полученная из (11) и (7) при тех же значениях параметров, в сравнении с экспериментальными результатами и упрощенной моделью [13].

Таким образом, с увеличением времени роста адсорбционный вклад в рост ННК возрастает. Полученная зависимость L(R) демонстрирует отклонение от скейлинговой формы зависимости $L \sim R^{a/b}$ в области больших времен роста и радиусов ННК. Начиная с некоторого момента, прямое попадание атомов Ga на врешину ННК становится определяющим процессом роста, что позволяет получить лучшее соответствие с экспериментом (рис. 2 и 3) для больших времен осаждения.

Данная работа выполнена при финансовой поддержке в рамках грантов РФФИ, контактов с Министерством образования и науки РФ, а также программ президиума РАН.

Список литературы

[1] Bjork M.T., Ohlsson B.J., Sass T. et al. // Appl. Phys. Lett. 2002. V. 80. P. 1058.

67

- [2] Gradecak S., Qian F., Li Y., Park H.G., Lieber C.M. // Appl. Phys. Lett. 2005.
 V. 87. P. 173 111.
- [3] Дубровский В.Г., Цырлин Г.Э., Устинов В.М. // ФТП. 2009. Т. 43. В. 12. С. 1585.
- [4] Sanford N.A., Blanchard P.T., Bertness K.A. et al. // J. Appl. Phys. 2010. V. 107. P. 034 18.
- [5] Rigutti L., Tchernycheva M., De Luna Bugallo A. et al. // J. Appl. Phys. 2010.
 V. 10. P. 2939.
- [6] De Luna Bugallo A., Rigutti L., Jacopin G. et al. // Appl. Phys. Lett. 2011.
 V. 98. P. 233 107.
- [7] Dubrovskii V.G., Soshnikov I.P., Cirlin G.E. et al. // Phys. Stat. Sol. (b). 2004.
 V. 241. P. R30.
- [8] Цырлин Г.Э., Дубровский В.Г., Сибирев Н.В. и др. // ФТП. 2005. Т. 39. С. 587.
- [9] Dubrovskii V.G., Cirlin G.E., Sibirev N.V. et al. // Nano Lett. 2011. V. 11. P. 1247.
- [10] Consonni V., Trampert A., Geelhaar L., Riechert H. // Appl. Phys. Lett. 2011.
 V. 99. P. 033 102.
- [11] Consonni V., Hanke M., Knelangen M. et al. // Phys. Rev. B. 2011. V. 83. P. 035 310.
- [12] Dubrovskii V.G., Consonni V., Geelhaar L. et al. // Phys. Rev. B. 2012. V. 85.
 P. 165 317.
- [13] Dubrovskii V.G., Consonni V., Geelhaar L. et al. // Appl. Phys. 2012. V. 100.
 P. 153 101.
- [14] Consonni V., Dubrovskii V.G., Trampert A. et al. // Phys. Rev. B. 2012. V. 85.
 P. 155 313.
- [15] Galopin E., Largeau L., Patriarche G. et al. // Nanotechnology. 2011. V. 22. P. 245 606.
- [16] Debnath R.K., Meijers R., Richter T. et al. // Appl. Phys. Lett. 2007. V. 90. P. 123 117.
- [17] Dubrovskii V.G., Sibirev N.V., Cirlin G.E. et al. // Phys. Rev. B. 2009. V. 80. P. 205 305.
- [18] Dubrovskii V.G., Soshnikov I.P., Sibirev N.V. et al. // J. Cryst. Growth. 2006. V. 289. P. 31.

5^{*} Письма в ЖТФ, 2013, том 39, вып. 2