02;04

Влияние электронной плотности на кинетику образования фуллеренов в углеродной плазме

© К.Л. Степанов, Ю.А. Станкевич, Л.К. Станчиц, Г.Н. Чурилов, А.С. Федоров, П.В. Новиков

Институт тепло- и массообмена им. А.В. Лыкова НАН, Минск, Беларусь E-mail: kls@hmti.ac.by Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия E-mail: churilov@iph.krasn.ru

Поступило в Редакцию 5 мая 2003 г.

Исследуется влияние заряда углеродных кластеров на кинетику их коагуляции. Решение уравнений кинетики показало, что при одних и тех же условиях скорость образования фуллеренов существенно выше, если учитываются заряды кластеров. В связи с этим выясняется роль малых примесей с низким потенциалом ионизации в углеродсодержащей плазме.

Существует большое число моделей образования фуллеренов [1], в которых рассмотрены различные кластеры-предшественники и различные пути их трансформации в фуллерен. Однако в большинстве моделей никак не учитывается, что все эффективные методы синтеза фуллеренов — плазменные [2–4]. Это означает, что углеродные кластеры несут заряд, который оказывает влияние на образование фуллеренов. Это влияние было показано экспериментально в [5] и теоретически в [6]. Величина и знак заряда углеродных кластеров зависят от параметров плазмы — концентрации электронов и температуры. Поэтому нами было проведено исследование влияния концентрации электронов на эффективность образования фуллеренов в углеродной плазме.

С этой целью рассматривалась полуэмпирическая кинетическая модель роста углеродных кластеров, основные предположения которой состоят в следующем. Всякое столкновение кластеров C_i и C_k с некоторой вероятностью W_{ik} приводит к образованию кластера C_{i+k} . Обратные процессы не учитываются, так как в интервале температур, где происходит рост кластеров, скорость их фрагментации мала из-за

10

$$\frac{dc_i}{dx} = \sum_{k=1}^{i/2} c_k c_{i-k} I_{k,i-k} - c_i \sum_k c_k I_{ik}, \qquad \sum_i i \cdot c_i = 1.$$
(1)

В (1) $c_i = n_i/N_C(r)$ — относительная концентрация кластеров сорта i, x — безразмерная пространственная координата, а безразмерная частота коагуляции I_{ik} равна

$$I_{ik} = W_{ik} \sqrt{\frac{i+k}{i\cdot k}} \frac{(R_i+R_k)^2}{D_1^2} \sum_{q_i} P_i(q_i) \sum_{q_k} P_k(q_k) \left[1 - \frac{q_i q_k}{(R_i+R_k)3kT/2} \right].$$
(2)

Здесь R_i — эффективный размер кластера *i*, D_1 — "диаметр" мономера, q_i — возможный заряд кластера, а P_i (q_i) — вероятность того, что *i*-кластер несет на себе этот заряд. Предполагалось, что кластеры могут быть нейтральными, однократно ионизованными и также в силу большого сродства к электрону иметь однократный и двухратный отрицательный заряд. Вероятности различных зарядовых состояний кластера C_i задаются соотношениями

$$\frac{P_i(q+1)c_e}{P_i(q)} = \frac{AT^{3/2}}{N_c(r)} \frac{Z_k^{q+1}}{Z_k^q} \exp\left(-\frac{E_i^q}{kT}\right),$$
$$A = 2\left(\frac{2\pi m_e k}{h^2}\right)^{3/2}, \qquad \sum_{q=-2}^{1} P_i(q) = 1,$$
(3)

в которых $c_e = n_e/N_C(r)$, Z_i^q — электронная статсумма кластера с зарядом q, E_i^q — его энергия ионизации. В (3) предполагается, что отношение колебательных и вращательных статсумм кластеров одного типа с разными зарядами равно 1. Необходимые для расчетов

сведения об энергетической структуре кластеров, энергиях ионизации и сродства к электрону были получены с использованием пакета VASP [8]. Наконец, отметим, что в квазиодномерном приближении безразмерная координата x связана с расстоянием до области дугового источника r выражением $dx = N_C(r)v_C(r)\sigma_{11}dr/U(r)$, где v_C — тепловая скорость атомов углерода, σ_{11} — газокинетическое сечение столкновения мономеров, U(r) — массовая скорость потока. Если считать процесс движения газоплазменной смеси близким к адиабатическому ($T \sim \rho^{\gamma-1}$) и представить изменение концентрации углерода и скорости течения в виде $N_C(r) = N_{C0}(r_0/r)^{\delta}$ и $U(r) = U_0(r_o/r)^{\beta}$ (где N_{C0} и U_0 — концентрация углерода и скорость струи на выходе из зоны разряда, r_0 — радиус электродов), то связь величин r и x примет вид

$$r = r_0 \times \begin{cases} (1 + \alpha L x/r_0)^{1/\alpha}, & \alpha \neq 0, \\ \exp(L x/r_0), & \alpha = 0. \end{cases}$$

$$\tag{4}$$

Здесь $L = U_0/(N_{C0}v_{C0}\sigma_{11})$ — путь, проходимый в потоке массовой частицей за время между двумя столкновениями мономеров при начальных параметрах плазмы, $\alpha = \beta + 1 - \delta(\gamma + 1)/2$. Когда $\beta = \delta = 1$ и $\gamma = 2$, распределение газодинамических характеристик соответствует плоской турбулентной струе [7,9]. В этом случае $\alpha = 1/2$ и $(N_C, U, T) = (N_{C0}, U_0, T_0)(r_0/r)$ уменьшаются обратно пропорционально расстоянию.

Концентрации электронов c_e , атомов c_M и ионов c_M^+ примеси описываются уравнениями

$$\frac{dc_e}{dx} = \frac{N_C V_R}{v_C \sigma_{11}} c_e \left[c_M \frac{AT^{3/2}}{N_c} \frac{Z_M^+}{Z_M} \exp\left(-\frac{J_M}{kT}\right) - c_M^+ c_e \right],$$
$$\frac{dc_M}{dx} = -\frac{dc_e}{dx} = -\frac{dc_M^+}{dx},$$
(5)

где V_R — скорость рекомбинации атома примеси [10]. Отметим, что в электронном балансе не учтены заряды кластеров, а использование равновесного приближения для их вычисления является вынужденным из-за отсутствия достоверной информации о скоростях процессов ионизации и рекомбинации. Тем не менее и в такой не вполне самосогласованной постановке можно рассмотреть влияние электрического заряда на динамику коагуляции кластеров.

Рис. 1. Распределение углеродных кластеров по размерам на различных расстояниях от источника. На врезке: изменение среднего заряда малых $(C_1-C_4,$ кривые I) и больших $(C_{40}, C_{50}, C_{60},$ кривые 2) кластеров.

При решении уравнений кинетики зависимость R_i от числа атомов углерода задавалась эмпирическим образом с учетом экспериментальных данных по размерам кластеров. Эта функция немонотонна и учитывает увеличение R_i в области существования цепей, плоских одинарных и двойных колец ($10 \le i \le 40$). Вероятности коагуляции рассчитывались согласно [9], при этом для малых кластеров ($i, k \le 2$) $W_{ik} \sim N_{\text{He}}a^3$ (a = 1.4 Å — длина связи, N_{He} — концентрация буферного гелия), а для больших $W_{ik} \approx \exp(-5800/kT)$. Как и в [7], для ряда выделенных фуллеренов с i = 60, 70, 74 и некоторых других вероятность коагуляции была уменьшена, чтобы отразить факт их устойчивости.

Ниже рассмотрены результаты решения уравнений (1)–(5) для следующих значений параметров течения в плоской турбулентной струе: $N_{C0} = 10^{16} \text{ cm}^{-3}$, $U_0 = 10^4 \text{ cm/s}$, $T_0 = 5000 \text{ K}$, $r_0 = 0.5 \text{ cm}$. Начальный состав задавался в виде мономеров углерода, что примерно отвечает равновесному составу при начальной температуре. Заметим, что при $r \ge 3 \text{ cm}$ параметры течения считаются постоянными, их величины ниже исходных в 6 раз. В качестве примесного металла выбирался скандий, обладающий низким потенциалом ионизации. Его добавки обес-

Рис. 2. Профиль температуры в струе и динамика роста фуллерена C_{60} без учета (1) и с учетом (2) заряда кластеров.

печивали концентрацию электронов $N_e = 10^8 - 10^{15} \, {\rm cm}^{-3}$ в зависимости от мольной доли и температуры. Эволюция распределения кластеров по размерам представлена на рис. 1 для трех значений x = 8.9, 14.1 и 891, которым отвечают расстояния r = 0.54, 0.57 и 9.2 сm. Сплошными кривыми показана функция распределения, полученная без учета зарядов кластеров, точками — с учетом заряда. Видно, что в начальной фазе течения скорость коагуляции незаряженных кластеров заметно выше, в дальнейшем тенденция изменяется на противоположную. Это связано с динамикой изменения заряда кластеров. Как можно видеть на врезке рис. 1, из-за высокой температуры имеющиеся здесь малые кластеры в основном заряжены положительно (ионизованы). В процессе разлета происходит их перезарядка, при $r > 0.75 \, \text{сm}$ малые кластеры несут отрицательный заряд. Изменение знака заряда происходит тем позднее, чем больше размер кластера. Поэтому в интервале $r \approx 0.8 - 1.25 \, {\rm cm}$ темп роста заряженных кластеров резко возрастает. На рис. 2 представлены динамика изменения концентрации С₆₀ в рассмотренных двух

случаях и распределение температуры в струе. Проведенный анализ подтверждает вывод [6] о том, что существует оптимальная плотность свободных электронов, обеспечивающая максимум выхода фуллеренов (в данном случае ~ 10^9 cm⁻³). Вместе с тем он указывает лишь на тенденцию процессов, детальное рассмотрение которых возможно при описании кинетики зарядов на кластерах. В заключение заметим, что абсолютные величины выхода фуллеренов чрезвычайно сильно зависят от реакционных способностей кластеров W_{ik} и профиля гидродинамических параметров течения.

Работа выполнена при поддержке ИНТАС (проект 2399).

Список литературы

- [1] Лозовик Ю.Е., Попов А.М. // УФН. 1997. Т. 167. В. 7. С. 751–774.
- Kratschmer W., Fostiropoulos K., Huffman D.R. // Chem. Phys. Lett. 1990.
 V. 170. P. 167–170.
- [3] Kroto H.W., Heath J.R., O'Brien S.C. et al. // Nature. 1985. V. 318. P. 162-163.
- [4] Чурилов Г.Н. // ПТЭ. 2000. № 1. С. 1–10.
- [5] Афанасьев Д.В., Дюжев Г.А., Каратаев В.И. // Письма в ЖТФ. 1999. Т. 25.
 В. 5. С. 35–40.
- [6] Churilov G.N., Fedorov A.S., Novikov P.V. // Carbon. 2003. V. 41. N 1. P. 173– 178.
- [7] Нерушев О.А., Сухинин Г.И. // ЖТФ. 1997. Т. 67. В. 2. С. 41-49.
- [8] Kresse G., Furthmuller J. // Comput. Mat. Sci. 1996. V. 6. P. 15-50.
- [9] Алексеев Н.И., Дюжев Г.А. // ЖТФ. 2002. Т. 72. В. 5. С. 121–129.
- [10] Романов Г.С., Степанов К.Л., Станчиц Л.К. // Журнал прикладной спектроскопии. 1995. Т. 62. № 1. С. 181–197.