11;12

О катодном инициировании вакуумного пробоя в импульсном режиме

© А.А. Емельянов, Е.А. Емельянова, Т.Н. Сафонова

Орловский государственный технический университет E-mail: emel@ostu.ru

Поступило в Редакцию 8 января 2004 г. В окончательной редакции 12 мая 2004 г.

На основании джоулева разогрева эмиттера термоавтоэлектронным током предложены критерии и методы оценки катодного инициирования вакуумного пробоя в импульсном режиме, применимые для катодов произвольной формы. Экспериментальная проверка на коаксиальных медных электродах ($d=0.2\,\mathrm{mm}$, $S=2500\,\mathrm{mm}^2$) в наносекундном диапазоне длительностей подтвердила справедливость предложенных критериев и методов.

Катодный механизм пробоя в вакууме связан с разрушением эмиттера протекающим через него током и в стационарном режиме соответствует достижению микронапряженностью электрического поля некоторого критического значения, определяемого физическими свойствами материала эмиттера [1]:

$$E = E_{cr}. (1)$$

Критерий (1) справедлив не только в режиме постоянного тока, но и при достаточно больших длительностях высоковольтных импульсов $t_p>10^{-6}\,\mathrm{s}$. Уменьшение длительности приводит к возрастанию микронапряженности, инициирующей пробой, и при $t_p\leqslant 10^{-6}\,\mathrm{s}$ критерий инициирования связан с плотностью тока j и временем запаздывания t_d пробоя [2]

$$j^2 t_d = \text{const.} \tag{2}$$

В [3] высказано предположение, что накопление определяющих пробой факторов до критической величины G инициирует пробой, т. е.

критерием инициирования в импульсном режиме является

$$\int_{0}^{t_{d}} f(U) dt = G, \tag{3}$$

где f(U) — скорость накопления факторов, определяющих возникновение пробоя.

В случае катодного инициирования определяющим пробой фактором является энергия, выделяемая в эмиттере протекающим током. При выделении энергии, равной энергии разрушения эмиттера, инициируется пробой. С увеличением амплитуды импульса напряжения растет мощность, выделяемая в эмиттере, и уменьшается время запаздывания пробоя. При катодном инициировании критерий (3) принимает вид [4]

$$\int_{0}^{t_d} j^2 dt = \text{const.} \tag{4}$$

Практическое применение критерия (4) возможно только в случае классического эмиттера известной геометрии, позволяющего определять плотность тока. В случае катода с достаточно большой рабочей поверхностью геометрия микроэмиттера остается неизвестной и критерием (4) нельзя воспользоваться.

С целью разработки новых критериев и методов оценки катодного инициирования вакуумного пробоя, применимых для электродов произвольной геометрии, исследовано влияние высоковольтного кондиционирования импульсами длительностью, равной времени запаздывания пробоя, на качество поверхности катода и импульсную электрическую прочность изоляции.

Качество катодной поверхности характеризует коэффициент усиления поля β на ее микронеоднородностях. Обработка катода импульсами длительностью $t_p=t_d$, равной времени запаздывания пробоя, является оптимальным режимом кондиционирования и формирует поверхность, качество которой определяется мощностью кондиционирующих импульсов. Мощность импульсов оптимального режима задается макронапряженностью E_0 , инициирующей пробой, при этом коэффициент β , характеризующий качество поверхности в результате обработки импульсами

 $t_p = t_d$, оказывается функцией пробивной напряженности [5]

$$\beta = \left(\frac{E_{cr}}{E_0}\right)^{0.9} \bigg|_{t_p = t_d},\tag{5}$$

где $E_{cr}=1.32\cdot 10^{10}\,\mathrm{V/m}$ — критическая напряженность, кондиционирование при которой дает идеальную поверхность с коэффициентом усиления $\beta=1$, когда напряженности E на вершине и E_0 у основания микровыступа оказываются равными $E=E_0=E_{cr}$.

Используя зависимость (5), можно связать относительные изменения параметра β и импульсной электрической прочности E_0 , достигаемые в результате кондиционирования импульсами $t_p = t_d$, и получить новую формулу критерия катодного инициирования, применимую для электродов с развитой рабочей поверхностью любой геометрии.

Поверхность катода, обработанную импульсами разной длительности $t_{p1}=t_{d1}$ и $t_{p2}=t_{d2}$, характеризуют установившиеся и разные значения коэффициента усиления β_1 и β_2 . При катодном инициировании поверхности с параметрами β_1 и β_2 будут, в свою очередь, соответствовать разные значения электрической прочности E_{01} и E_{02} и напряжения импульсного пробоя U_1 и U_2 .

Введя в рассмотрение коэффициенты относительного изменения качества поверхности

$$K_{\beta} = \frac{\beta_1}{\beta_2} \tag{6}$$

и электрической прочности

$$K_U = \frac{U_2}{U_1},\tag{7}$$

получим на основании (5), что в случае катодного инициирования для катода, обработанного импульсами $t_p = t_d$, выполняется условие

$$\left. \frac{K_{\beta}}{K_U^{0.9}} \right|_{t_p = t_d} = 1. \tag{8}$$

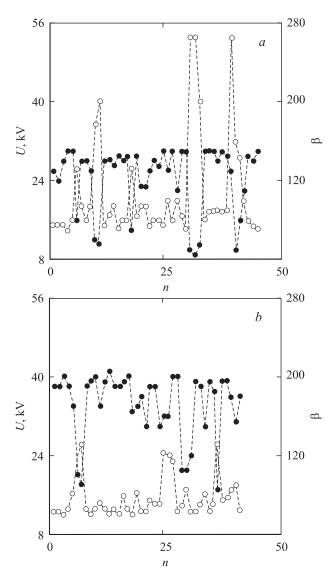
Выражение (8) представляет собой новую форму критерия катодного инициирования пробоя в импульсном режиме. Критерий связывает относительные изменения качества поверхности катода и импульсной электрической прочности в результате перехода при оптимальном

режиме кондиционирования от импульсов одной длительности $t_{p1}=t_{d1}$ к импульсам другой длительности $t_{p2}=t_{d2}.$

Малые изменения поверхности характеризуют малые изменения параметров β , тогда его конечное значение β_2 , достигаемое в результате кондиционирования импульсами $t_{p2}=t_{d2}$, можно представить через начальное значение β_1 и малое приращение

$$\beta_2 = \beta_1 + \Delta \beta. \tag{9}$$

При катодном инициировании малому изменению параметра соответствует малое изменение электрической прочности и напряжения импульсного пробоя


$$U_2 = U_1 + \Delta U. \tag{10}$$

В пренебрежении величиной второго порядка малости критерий (8) принимает вид

$$\frac{\Delta\beta}{\beta_1} = -0.9 \frac{\Delta U}{U_1} \bigg|_{t_0 = t_d}.\tag{11}$$

Согласно (11), относительному уменьшению коэффициента β ($\Delta\beta<0$) соответствует относительное повышение напряжения импульсного пробоя ($\Delta U>0$), а относительному ухудшению качества катодной поверхности ($\Delta\beta>0$) соответствует относительное ухудшение электрической прочности ($\Delta U<0$).

Проверка предложенных критериев (8) и (11) осуществлена на коаксиальных медных электродах площадью $S=2500\,\mathrm{mm^2}$ при величине межэлектродного зазора $d=0.2\,\mathrm{mm}$ и остаточном давлении $P\approx 10^{-5}\,\mathrm{Pa}$. В экспериментах использованы высоковольтные импульсы длительностью $t_{p1}=200\,\mathrm{ns}$ и $t_{p2}=50\,\mathrm{ns}$. Перед каждым импульсным воздействием в режиме постоянного тока снималась вольт-амперная характеристика, по крутизне которой в координатах Фаулера—Нордгейма определялся коэффициент усиления β . После измерений на постоянном токе и оценки параметра β на промежуток подавали импульсы, амплитуду которых последовательно повышали до возникновения при минимальном перенапряжении первого пробоя. Перед началом измерений на каждой длительности осуществлено кондиционирование импульсами $t_p\approx t_d$ до достижения установившихся значений коэффициента усиления и импульсной электрической прочности.

Изменение напряжения первого пробоя и коэффициента усиления поля с числом импульсов длительностью $t_p=t_d$ в установившемся режиме: $a-t_p=200~\mathrm{ns};~b-t_p=50~\mathrm{ns};~ullet-U;~ullet-eta.$

На рисунке приведены графики изменения коэффициента усиления поля и определяемого им напряжения первого импульсного пробоя, соответствующие установившемуся режиму, с числом импульсов длительностью $t_{p1}=200~\mathrm{ns}$ и $t_{p2}=50~\mathrm{ns}$.

Из сопоставления при $t_p=$ const кривых $\beta(n)$ и U(n) следует, что состояние поверхности коррелирует с электрической прочностью. Ухудшение качества поверхности (скачок β в сторону увеличения) приводит к снижению прочности (скачок U в сторону уменьшения) и, наоборот, улучшение качества поверхности (скачок β в меньшую сторону) сопровождается повышением прочности (скачок U в большую сторону). Корреляция изменений U и β подтверждает ответственность катодных процессов за инициирование импульсного пробоя.

В результате оптимальных режимов кондиционирования импульсами $t_{p1}=200$ ns средние значения коэффициента усиления и пробивного напряжения составили $\overline{\beta}_1=107$ и $\overline{U}_1=24.6$ kV при относительных разбросах $\sigma_{\beta 1}/\overline{\beta}_1=0.46$ и $\sigma_{U1}/\overline{U}_1=0.27$. Кондиционирование импульсами $t_{p2}=50$ ns повысило качество поверхности катода $\overline{\beta}_2=77$ и увеличило прочность $\overline{U}_2=34$ kV при уменьшении относительных разбросов $\sigma_{\beta 2}/\beta_2=0.3$ и $\sigma_{U2}/\overline{U}_2=0.19$.

Использование критерия катодного инициирования импульсного пробоя (8) позволяет на основании относительных изменений качества поверхности K_{β} и импульсной электрической прочности K_{U} утверждать об ответственности катодного инициирования за нарушение прочности изоляции на импульсах $t_{p}=200\,\mathrm{ns}$ и $t_{p}=50\,\mathrm{ns}$. Погрешность оценки составила $\sim 3\%$. Четырехкратное изменение длительности при переходе от импульсов $t_{p}=200\,\mathrm{ns}$ к импульсам $t_{p}=50\,\mathrm{ns}$ и обратно сопровождается $\sim 40\%$ изменением качества поверхности и соответствующим $\sim 40\%$ изменением электрической прочности. Относительный разброс величин β и U также изменяется на $\sim 40\%$. Критерий (11) подтвердил ответственность катодного механизма инициирования на импульсах $t_{p}=200\,\mathrm{ns}$ и $t_{p}=50\,\mathrm{ns}$ с погрешностью $\sim 11\%$.

Таким образом, предложены новые критерии и методы оценки катодного инициирования вакуумного пробоя в импульсном режиме, подтвержденные экспериментально на электродах с развитой рабочей поверхностью. Предложенные критерии могут быть использованы для оценки катодного механизма инициирования в вакуумных промежутках с произвольной геометрией электродов.

Список литературы

- Alpert D., Lee D.A., Lyman F.M. et al. // J. Vac. Sci. Tech. 1964. V. 1. N 2. P. 35-50.
- [2] Карцев Г.К., Месяц Г.А., Проскуровский Д.И. и др. // Докл. АН СССР. 1970. Т. 129. № 2. С. 309–312.
- [3] Олендзская Н.Ф., Сальман М.А. // ЖТФ. 1970. Т. 40. В. 2. С. 333–337.
- [4] Емельянов А.А., Кассиров Г.М. // Изв. вузов. Физика. 1976. В. 9. С. 105–110.
- [5] Емельянов А.А. // ПТЭ. 1997. № 5. С. 68–71.