05 Тепловые эффекты, возникающие в монокристаллах сульфида самария под действием равномерного нагрева

© В.В. Каминский, С.М. Соловьев

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: Vladimir.Kaminski@mail.ioffe.ru

В окончательной редакции 16 февраля 2005 г.

При проведении циклов нагрева до $T \sim 500 \, \text{K}$ и охлаждения монокристаллов сульфида самария обнаружены скачки понижения температуры величиной до 125 K. Наличие эффекта может быть связано с характерным для SmS фазовым переходом I рода полупроводник—металл.

При исследовании эффекта генерации электродвижущей силы (ЭДС) при равномерном нагреве образца в условиях отсутствия внешних градиентов температуры в сульфиде самария (SmS) [1] нами было обнаружено существенное по величине (до 125 K) понижение температуры образца, сопровождающее генерацию ЭДС. Настоящее сообщение посвящено этому эффекту.

Эксперименты проводились на монокристаллах SmS с размерами $\sim 2.5 \times 2 \times 1 \,\mathrm{mm}$, выколотых по плоскостям спайности [100], [010] и [001]. Они имели удельное электросопротивление $\rho =$ $= 0.02 \div 0.03 \,\Omega \cdot \mathrm{cm}$ и холловскую концентрацию электронов проводимости $n \sim 6 \cdot 10^{18} \,\mathrm{cm}^{-3}$. Методика экспериментов была аналогична [1]. Нагреваемый образец находился в среде вакуумного масла. Конструкция блока образца позволяла надежно избавиться от возникновения внешних градиентов при нагревании и, как следствие, от паразитных сигналов термоэдс. Температура измерялась с помощью двух термопар, прикрепленных к двум противоположным торцам образца. С этих же торцов снимался сигнал ЭДС. Сигналы с термопар и образца обрабатывались на ЭВМ и выводились на дисплей в процессе эксперимента с временным разрешением 0.1428 s. На рисунке показаны в зависимости от времени температуры обеих торцевых областей образца (кривые 1 и 2), разница их температур ΔT (кривая 3) и величина выходного сигнала U (кривая 4).

45

Динамика изменения температур торцевых областей образца (1, 2), разницы их температур (3), возникающей при этом ЭДС (4) и значений термоэдс (5) в процессе нагревания и охлаждения монокристалла SmS.

При нагревании до 387 К наблюдается синхронное повышение температур торцов, что указывает на отсутствие градиентов температуры на образце. При дальнейшем повышении температуры на одном из торцов образца наблюдаются периоды понижения температуры на величину до $\Delta T = 125$ К длительностью до 8 min. Эти колебания температуры заканчиваются при остывании образца до температуры T = 440 К одновременным охлаждением обоих торцов, т.е. образца в целом (см. рисунок, кривые 1 и 2, t = 77.5 min). При T < 440 К наблюдается синхронное понижение температур торцов.

Одно из возможных объяснений наблюдаемых тепловых эффектов может основываться на изоструктурном (NaCl-NaCl) скачкообразном фазовом переходе I рода полупроводник-металл, характерном для SmS. Переход происходит при различных механических воздействиях

на образцы SmS, в частности, при всестороннем сжатии давлением $\sim 650 \,{\rm MPa}$ [2]. Механизм фазового перехода основан на экранировании электронами проводимости электрического потенциала ионов самария и возникает при достижении критической концентрации этих электронов. Электроны проводимости с 4f-уровней ионов самария ($E_f \approx 0.23 \, \text{eV}$, $N_f = 1.8 \cdot 10^{22} \, {\rm cm}^{-3})$ и примесных донорных уровней ($E_i \approx 0.05 \, {\rm eV}$, $N_i = (1 \div 5) \cdot 10^{20} \, \mathrm{cm}^{-3}$), соответствующих дефектным ионам Sm²⁺, расположенным в вакансиях подрешетки серы [3]. Под воздействием давления фазовый переход происходит в два этапа: 1) скачкоообразное увеличение концентрации ионов проводимости за счет активации с примесных уровней $(\mathrm{Sm}^{2+} \rightarrow \mathrm{Sm}^{3+} + \bar{e}); 2)$ аналогичное изменение валентности ионов самария, находящихся в узлах кристаллической решетки, за счет активации электронов с 4f-уровней. Оба перехода (моттовского типа) заканчиваются выталкиванием примесных уровней E_i и 4*f*-уровней в зону проводимости. При этом этап 1) стимулирует (поставляет достаточное количество электронов в зону проводимости) реализацию этапа 2) [4].

Исходя из этой модели, попытаемся объяснить наблюдаемые эффекты на качественном уровне. Сразу же отметим, что концентрация дефектных ионов самария (N_i) в SmS в общем случае не одинакова в различных частях объема образца. По-видимому, этой причиной объясняется различие в поведении температуры различных торцов образца при его нагревании (величины N_i на торцах не одинаковы), приводящее к возникновению градиента температуры.

Согласно [5], при нагревании до T > 450 K монокристаллы SmS переходят в высокотемпературную фазу, характеризующуюся энергией активации электронов проводимости $E_f = 0.18 \text{ eV}$ и величиной термоэдс $\alpha \sim 10 \mu \text{V/K}$, в то время как в низкотемпературной фазе величина α на порядок выше, а энергия активации проводимости 0.05 eV. Отсюда следует, что высокотемпературная фаза может соответствовать состоянию образца SmS, когда этап 1) фазового перехода уже произошел, а этап 2) не наступил, так как давление отсутствует и 4f-уровни не приблизились ко дну зоны проводимости из-за барического сдвига.

Согласно [1], переход в высокотемпературную фазу может начинаться уже при T > 375 К. Таким образом, в нашем случае при T > 387 К образец уже может перейти в высокотемпературную фазу, что, повидимому, и происходит, так как величина $\alpha = U/\Delta T$, вычисленная из данных кривых 3 и 4, порядка 10μ V/K (кривая 5). Справедливость

такого расчета значений α вытекает из полной идентичности геометрии нашего эксперимента с таковой для измерения термоэдс. Пики на кривых 3 и 4 совпадают по времени. По этим пиковым значениям U и ΔT рассчитаны точки на кривой 5.

При дальнейшем нагревании образца вблизи одного из его торцов (кривая 2), создаются условия для реализации этапа 2) фазового перехода. Тепловые забросы с 4f-уровней приводят к достижению критической концентрации электронов проводимости, достаточной для столь сильной экранировки кулоновского поля ионов Sm²⁺, что все электроны, находящиеся на 4f-уровнях, делокализуются и попадают в зону проводимости. Однако такой коллективный заброс электронов сопровождается локальным понижением температуры, что приводит к понижению концентрации до величин, меньших критического значения, и нарушению условий реализации этапа 2). В результате конечное (металлическое) состояние фазового перехода SmS в отсутствие внешнего давления застабилизироваться не может. Можно оценить величину температурного эффекта. Поглощаемая энергия при коллективном забросе 4f-электронов в зону проводимости должна быть порядка $E_f \cdot N_f$. В условиях отсутствия теплообмена это приведет к понижению температуры на $\Delta T = E_f N_f / C$, где $C = 1.8 \text{ J/cm}^3 \cdot \text{K}$ — удельная теплоемкость полупроводникового SmS [6]. Расчет дал величину $\Delta T \sim 300$ K, что согласуется с наблюдаемой $\Delta T \leq 125$ K, так как в эксперименте условие отсутствия теплообмена не соблюдено.

Наблюдаемое при $T \sim 440$ К понижение температуры всего образца соответствует его возвращению в низкотемпературное состояние и описано нами в [1]. При T < 440 К скачки температуры прекращаются, так как концентрация электронов проводимости резко понижается и понижается степень экранированности кулоновского потенциала ионов самария.

Таким образом, наблюдаемый эффект понижения температуры образца может быть объяснен в рамках модели фазового перехода в SmS. Более подробное рассмотрение вопроса, а также альтернативный вариант объяснения эффекта на основе оптических и рентгеноструктурных измерений, будут представлены нами в другой работе.

Авторы благодарны А.В. Голубкову за предоставление образцов SmS, а Л.Н. Васильеву, М.М. Казанину и И.А. Смирнову за ценные замечания при обсуждении текста сообщения.

Список литературы

- [1] Каминский В.В., Соловьев С.М. // ФТТ. 2001. Т. 43. В. 3. С. 423–426.
- [2] Смирнов И.А., Оскотский В.С. // УФН. 1978. Т. 124. В. 2. С. 241–279.
- [3] Каминский В.В., Голубков А.В., Васильев Л.Н. // ФТТ. 2002. Т. 44. С. 1501– 1505.
- [4] Каминский В.В., Капустин В.А., Смирнов И.А. // ФТТ. 1980. Т. 22. В. 12. С. 3568–3572.
- [5] Казанин М.М., Каминский В.В., Соловьев С.М. // ЖТФ. 2000. Т. 70. В. 5. С. 136–138.
- [6] Каминский В.В. // ФТТ. 1978. Т. 20. В. 6. С. 1742-1744.