04 О критериях теплового состояния термокатода

© Б.Д. Цыдыпов

Отдел физических проблем при президиуме Бурятского научного центра СО РАН, Улан-Удэ E-mail: Imf@ofpsrv.bsc.buryatia.ru

Поступило в Редакцию 11 мая 2005 г.

На основе квазиодномерной постановки тепловой задачи получены критерии оценки вклада основных источников и стоков энергии в сложном теплообмене стержневых термокатодов генераторов низкотемпературной плазмы. Критериальные соотношения позволяют определить тепловые режимы функционирования сильноточных длинных катодов. Разработана методика оптимизации теплового состояния электродов, расчеты по которой согласуются с экспериментальными результатами.

Катодный узел плазменных устройств с сильноточным термоэлектродом функционирует в экстремальных условиях по уровням тепловых потоков и токовых нагрузок. От теплового состояния данного элемента и эрозионной стойкости катода зависит работоспособность всей плазменной системы [1–4]. Расчет и оптимизация теплового режима катодного узла связаны с значительными трудностями ввиду обеспечения требуемого термического контакта в местах соединений разных металлов, различием их теплоэлектрофизических и механических свойств, выбором геометрии и эффективного теплообмена конструкции [4,5].

На рисунке показана типичная схема катодного узла генераторов низкотемпературной плазмы. Для сильноточных плазмотронов наиболее работоспособными являются конструкции, состоящие из стержневого электрода — вставки I из активированного вольфрама, запрессованного в медный цилиндрический держатель — обойму II [6]. Длина вылета катода варьируется от $L_c = 0$ до $L_c/d_1 \gg 1$ (длинный катод). На рабочий торец катода z = 0 в пределах пятна радиуса r_0 поступает тепловой поток, модулирующий термическое воздействие плазмы разряда q_0 . За катодным пятном и на цилиндрических поверхностях электрода и обоймы происходят конвективный и лучистый теплообмены

87

Расчетная модель типичного катодного узла. І — катод (вставка), ІІ — держатель (обойма), ІІІ — плазма разряда, ІV — вода, V — газ.

с защитным плазмообразующим газом и внешней средой. Тепловая задача для катодного узла такой конструкции заключается в решении двумерного уравнения нестационарной теплопроводности с нелинейными граничными условиями для системы вставка—обойма [5,7]:

$$c\rho \, \frac{\partial T}{\partial t} = \operatorname{div}(\lambda \operatorname{grad} T) + q_v, \qquad (1)$$

где T — температура, c — удельная теплоемкость, ρ — плотность материала, λ — коэффициент теплопроводности, q_v — объемная плотность внутренних источников и стоков, обусловленных различного рода физико-химическими процессами выделения и поглощения энергии. В работах расчет ведется на основе нестационарной модели катодных и прикатодных процессов, позволяющей определить тепловое состояние электродного узла с максимальным ресурсом работы при заданных внешних условиях.

В ряде практических случаев целесообразно использование упрощенных постановок с выделением только определяющих факторов тепловой задачи. Например, при расчете теплового состояния длинных стрежневых катодов ($L_c/d_1 \gg 1$) применяется подход с квазиодномерным методом решения задачи [8]. Здесь влияние массивной охлаждае-

мой обоймы на температурное поле вставки невелико и оно в задаче заменяется граничным условием I рода, а сложный теплообмен через боковые поверхности электрода учитывается введением в одномерное уравнение теплопроводности так называемых эффективных объемных источников и стоков энергии. Это приближение подходит для катодов с диффузной привязкой разрядов при большой токовой нагрузке, когда площадь контакта близка к поперечному сечению электрода ($r_0 \approx r_1$) и изменением температуры по радиусу можно пренебречь.

Уравнение (1) записывается для вставки I в виде:

$$c_1 \rho_1 \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left[\lambda_1(T) \frac{\partial T}{\partial z} \right] - \frac{2\alpha(T)}{r_1} \left(T - T_g \right) - \frac{2\varepsilon(T)\sigma_B}{r_1} \left(T^4 - T_m^4 \right) + j_1^2 / \sigma_1(T), \quad (2)$$

где $\alpha(T)$ — коэффициент конвективной теплоотдачи, $\varepsilon(T)$ — интегральная излучательная способность, σ_B — постоянная Стефана—Больцмана, T_g и T_m — температуры рабочего газа и окружающей среды.

Для установившихся тепловых режимов численно решается стационарное уравнение теплопроводности стандартным итерационным методом Рунге—Кутта с учетом известного из эксперимента распределения температуры вдоль катода T(z) с граничными условиями [1,9]:

$$T(z_1) = T_1, \quad T(z_2) = T_2.$$

Второе граничное условие удовлетворяется вариацией в начальном сечении z_1 теплового потока, принимая $T_g = T_m = 300$ К.

Квазиодномерный метод позволяет оптимизировать температурный режим катода и выявить вклад каждого из составляющих уравнения (2) в его энергобаланс [9]. Однако подобная оптимизация требует совместной постановки расчетных и экспериментальных исследований, что не всегда возможно реализовать на практике. Найти оптимальный тепловой режим термоэмиссионного катода и провести оценку энергобаланса можно следующим более рациональным способом.

Считая для удобства теплофизические коэффициенты в уравнении (2) постоянными и опуская нижние индексы в переменных,

приведем его к безразмерному виду:

$$\frac{\partial \widetilde{T}}{\partial \tau} = Fo \frac{\partial^2 \widetilde{T}}{\partial \tilde{z}^2} - B(\widetilde{T} - 1) - C(\widetilde{T}^4 - 1) + G\tilde{j}^2.$$
(3)

Здесь $Fo = \frac{\lambda \tau_0}{c\rho l^2}$ — число Фурье, $B = \frac{2\alpha \tau_0}{c\rho r}$, $C = \frac{2\varepsilon\sigma_B \tau_0 T_c^3}{c\rho r}$, $G = \frac{j_0^2 \tau_0}{c\rho \sigma T_c}$, $\tilde{T} = T/T_c$, $\tilde{j} = j/j_0$ — относительные температура и плотность тока; $\tau = t/\tau_0$, $\tilde{z} = z/l$ — безразмерные координаты; τ_0 , l — масштабы координат, $T_g = T_m = T_c$ — определяющая температура системы, j_0 — характерная плотность тока в катоде.

Количественный вклад составляющих энергобаланса на катоде можно оценить, сравнивая между собой безразмерные параметры *Fo*, *B*, *C* и *G* при слагаемых уравнения (3). В работе [10] рассмотрен критерий $\theta = Fo/G$, отражающий эффективность отвода тепла теплопроводностью относительно джоулева тепловыделения. При следующей записи критерия $\theta = \frac{\lambda T_c/l}{j_0^2 l/\sigma}$ становится очевидным, что выражение $\lambda T_c/l$ представляет собой кондуктивный тепловой поток, отводимый от катода при условии $T_0 = 0$, а соотношение $j_0^2 l/\sigma$ — эффективный тепловой поток джоулева нагрева катода. По аналогии получим критерии

$$\chi = \frac{B}{G} = \frac{2\alpha T_c/r}{j_0^2 l/\sigma}, \quad \eta = \frac{C}{G} = \frac{2\varepsilon \sigma_B T_c^4/r}{j_0^2 l/\sigma}$$

отражающие соответственно эффективности конвективных и лучистых потоков тепла по сравнению с джоулевым тепловыделением.

При квазиодномерном подходе полученные критерии можно интерпретировать с объемной точки зрения. В данном случае баланс термоэмиссионного катода для эффективных объемных тепловых потоков запишется в виде:

$$q_0 + q_1 - q_2 - q_3 - q_4 = 0, (4)$$

где объемными источниками энергии являются компоненты q_0 и q_1 — тепловое воздействие плазмы разряда и джоулево тепловыделение, а объемными стоками энергии: q_2, q_3, q_4 — соответственно потоки тепла, уносимые за счет кондуктивного, конвективного и лучистого теплообменов.

В зависимости от токовой нагрузки, т.е. мощности джоулева эффекта, на термокатоде реализуются следующие тепловые ситуации [4]: $q_0 > 0, q_0 = 0, q_0 < 0.$

Рассмотрим эти три случая применительно к квазиодномерному методу в порядке возрастания токовой нагрузки.

1. $q_0 > 0$, значит $q_2 + q_3 + q_4 > q_1$.

Переходя к критериальным соотношениям, получим

$$\theta + \chi + \eta > 1.$$

Обозначая их сумму как ξ , имеем $\xi > 1$. Критерий показывает отношение основных составляющих объемных стоков тепла к величине джоулевой диссипации энергии в катоде. При малых токах доля джоулева нагрева в энергобалансе невелика и $q_0 > 0$. В этой ситуации основным источником энергии, нагревающим металл, является тепловой поток из дугового разряда.

2. $q_0 = 0, q_2 + q_3 + q_4 = q_1$ или $\theta + \chi + \eta = \xi = 1$.

Для теплового (токового) режима этот случай является оптимальным. Здесь тепловое воздействие плазмы разряда в виде бомбардировки ионов, кондуктивных и лучистых составляющих полностью компенсируется обратным потоком энергии, уносимым электронами эмиссии, испаряющимися атомами металла и радиационным теплоотводом [11]. Поэтому между этими конкурирующими процессами устанавливается динамическое равновесие и при правильном выборе характерных параметров и масштабов задачи в уравнении (3) критерием оптимального режима будет условие $\xi = 1$.

3. $q_0 < 1, q_2 + q_3 + q_4 < q_1$ или $\theta + \chi + \eta = \xi < 1.$

Термическое состояние катода определяется режимом с так называемым джоулевым перегревом [3]. Особенность режима в том, что профиль температуры катода T(z) за счет большой мощности джоулева нагрева приобретает немонотонный характер и в области горячего торца производная $\partial T(z)/\partial z$ становится отрицательной величиной. В сильноточных катодах плавильных плазмотронов немонотонности температурного поля наблюдаются и по радиусу горячего торца [12].

Итак, сопоставляя полученные критерии между собой, можно оценить энергетический баланс и выявить тепловой режим функционирования катода. При этом наряду с ранее выведенным критерием θ [10] необходимо учитывать и другие критериальные соотношения.

Практический интерес представляет оптимальный температурный режим при $\xi = 1$. Уточним для данного режима характерные значения параметров, входящих в сформулированные критерии. Выбор характерной плотности тока, равной $j_0 = I/(\pi r_1^2)$, для длинных катодов доста-

точно обоснован. Использование в расчетах средней температуры катода T_c в качестве определяющей температуры системы: нагретое твердое тело—охлаждающий газ—окружающая среда при сложном теплообмене также является оптимальным [13]. Однако в общем случае расчет по формуле $T_c = \frac{1}{F} \int_F T dF$ требует знания температуры в отдельных точках поверхности F, т. е. постановки экспериментальных измерений T(z). Обойти это можно следующим образом. Известно, что при оптимальном токовом режиме профиль температуры T(z) стержневого длинного катода приближается к линейной функции [5,11,14]. Используя этот факт, зная температуры холодного T_0 и горячего T_1 торцов электрода, по формуле $T_c = 0.5(T_0 + T_1)$ легко вычислить среднюю температуру. Температура холодного торца, охлаждаемого водой, равна $T_0 = 300$ К. Температура T_1 определяется по следующей схеме. Сначала для известной геометрии стержневого термоэмиссионного катода по эмпирическому соотношению [14]:

$$I_{opt} = 12 d^2 \tag{5}$$

находится оптимальный рабочий ток (d — диаметр электрода в mm) и по формуле $j_0 = 4I_{opt}/(\pi d^2)$ определяется соответствующая ему плотность тока j_0 . Затем, считая, что в термоэмиссионном режиме ток на катоде полностью обусловлен механизмом термоэмиссии ($j_0 = j_e$), из формулы Ричардсона—Дешмана

$$\dot{t}_e = AT_1^2 \exp[e\varphi/(kT_1)] \tag{6}$$

вычисляется температура горячего торца T_1 . Здесь j_e — плотность тока термоэмиссии, A — постоянная Ричардсона, $e\varphi$ — работа выхода, k — постоянная Больцмана.

Проиллюстрируем методику на следующем примере. Рассмотрим цилиндрический катод из лантанированного вольфрама ВЛ-30 с геометрией $r_1 = 0.25$ ст и $L_1 = 3$ ст, функционирующий в среде аргона при атмосферном давлении [7,14]. Используя формулу (5), находим оптимальный ток $I_{opt} = 300$ А и характерную плотность тока $j_0 = I_{opt}/(\pi r_1^2) = 1.53 \cdot 10^3$ А/ст². Процедуру вычисления T_1 по формуле (6) можно значительно упростить, если воспользоваться номограммами $j_e(e\varphi, T)$, приведенными в [3]. Катоду из ВЛ-30 с работой выхода $e\varphi = 3.0$ eV плотности тока, найденной выше, соответствует температура эмиссии при $T_1 \approx 2900$ К. Следовательно, характерная температура равна $T_c = 0.5(T_0 + T_1) = 2600$ К. Теплоэлектрофизические параметры при такой температуре табулированы [5]: $\lambda = 1.09$ W/(ст · K),

Зависимости критериев теплового режима катода от его длины

L_1 , cm	3	4	5	6	7	8	9
θ	1.93	1.08	0.69	0.48	0.35	0.27	0.21
ξ	2.67	1.82	1.43	1.22	1.09	1.01	0.95

 $\sigma^{-1} = 42.7 \,\mu\Omega \cdot \text{сm}, \, \varepsilon = 0.207.$ Коэффициент *α* сильно зависит от условий работы плазменного устройства, и его значение может колебаться в широких пределах: $4 \cdot 10^{-5} - 3.7 \cdot 10^{-2} \,\text{W/(cm}^2 \cdot \text{K})$ [15]. Для расчета используем усредненную величину, равную $\alpha = 10^{-3} \,\text{W/(cm}^2 \cdot \text{K})$. Следует заметить, что в широко используемых плазменных устройствах, например, в сварочных и плавильных плазмотронах коэффициент *α* мал и конвективным составляющим при определении энергообмена стержневых термоэмиссионных электродов можно пренебречь [14].

В таблице приведены критериальные соотношения θ и ξ для различных значений длины L_1 при фиксированном радиусе катода $r_1 = 0.25$ сm. Критерии, связанные с размером радиуса катода, остаются постоянными и равны $\chi = 0.61$ и $\eta = 0.13$. Оптимальный тепловой режим при силе тока I = 300 А реализуется на катоде с $L_1 = 7-9$ сm в зависимости от глубины заделки в обойму и длины вылета $L_c \sim 6$ сm. Эти данные согласуются с экспериментальными результатами, полученными в [1,11].

С уменьшением L_1 величина I_{opt} возрастает и соответственно увеличивается погрешность расчета по формуле (5). Эксперименты показывают, что для электрода с $L_1 = 3$ ст оптимальным становится ток в 350 A [14]. Если принять $r_0 = r_1$, плотность тока получается равной $1.78 \cdot 10^3$ A/cm², а критерии завышенными: $\theta = 1.41$, $\chi = 0.43$, $\eta = 0.08$ и $\xi = 1.92$. Такое несоответствие объясняется тем, что на катодах с небольшим вылетом L_c разряд приобретает более контрагированную форму привязки и $r_1 > r_0$, поэтому необходимо более точное определение значений r_0 и j_0 . Действительно, расчет катода данной геометрии по замкнутой нестационарной модели [7] дает оптимальный ток 350 A при $j_0 = 2.53 \cdot 10^3$ A/cm², $r_0 = 0.21$ ст и температуре $T_1 = 2860$ К. Подставляя эти данные в критериальные соотношения, получим: $\theta = 0.71$, $\chi = 0.22$, $\eta = 0.04$, $\xi = 0.97$, что соответствует оптимальному термическому состоянию электрода.

Таким образом, численные примеры свидетельствуют о правильности предлагаемой методики оптимизации теплового режима и критериальной оценки составляющих энергообмена сильноточных катодов при условии $L_c/d_1 \gg 1$.

Список литературы

- Жуков М.Ф., Аньшаков А.С., Дандарон Г.-Н.Б. // Прикатодные процессы и эрозия электродов плазмотронов. Новосибирск: ИТ СО АН СССР, 1977. С. 61–84.
- [2] Корсуков В.Е., Патриевский П.В., Рутберг Ф.Г. н др. // ЖТФ. 1986. Т. 56.
 В. 9. С. 1724–1729.
- [3] Гордеев В.Ф., Пустогаров А.В. Термоэмиссионные дуговые катоды. М.: Энергоиздат, 1988. 192 с.
- [4] Дюжев Г.А., Зимин А.М., Хвесюк В.И. Плазменные ускорители и ионные инжекторы. М.: Наука, 1984. С. 200–217.
- [5] Паневин И.Г., Хвесюк В.И., Назаренко И.П. и др. Теория и расчет приэлектродных процессов. Новосибирск: Наука, 1992. 197 с.
- [6] Генераторы низкотемпературной плазмы // Энциклопедия низкотемпературной плазмы / Вводный том II под ред. акад. В.Е. Фортова. М.: Наука, 2000. С. 280–328.
- [7] *Цыдыпов Б.Д.* Динамика нестационарных процессов в сильноточных плазменных системах. Улан-Удэ: Изд-во БНЦ СО РАН, 2002. 268 с.
- [8] Hugel H., Krulle G. // Beitr. Plasmaphys. 1969. Bd 9. N 2. S. 87-116.
- [9] Пустогаров А.В., Колесниченко А.Н., Гаврюшенко Б.С. и др. // ТВТ. 1973. Т. 11. № 11. С. 174–179.
- [10] Зимин А.М., Козлов Н.П., Хвесюк В.И. // Известия СО АН СССР. Серия техн. наук. 1979. № 3. В. 1. С. 9–11.
- [11] Жуков М.Ф., Козлов Н.П., Пустогаров А.В. и др. Приэлектродные процессы в дуговых разрядах. Новосибирск: Наука, 1982. 157 с.
- [12] Бортничук В.С., Крутянский М.М. Плазменно-дуговые плавильные печи. М.: Энергоиздат, 1981. 120 с.
- [13] Телегин А.С., Швыдский В.С., Ярошенко Ю.Г. Тепломассоперенос. М.: ИКЦ "Академкнига", 2002. 455 с.
- [14] Аньшаков А.С., Урбах Э.К., Цыдыпов Б.Д. // Теплофизика и аэромеханика. 1995. Т. 2. № 2. С. 167–171.
- [15] Жуков М.Ф., Никифоровский В.С. // Экспериментальные исследования плазмотронов. Новосибирск: Наука, 1977. С. 292–314.