01;04 Двухтемпературная модель импульсно-периодического излучающего разряда высокого давления в парах цезия

© Ф.Г. Бакшт, В.Ф. Лапшин

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург Петербургский государственный университет путей сообщения E-mail: baksht@mail.ioffe.ru

Поступило в Редакцию 30 июля 2007 г.

Формулируется двухтемпературная модель импульсно-периодического излучающего разряда в цезии. Рассматриваются условия, когда вследствие большого давления и высокой температуры в плазме устанавливается локальное термодинамическое равновесие (ЛТР) при температуре электронов. Анализируется неравновесная пристеночная область, в которой состояние плазмы отклоняется от ЛТР. Рассчитываются параметры плазмы в импульсе и спектр излучения.

PACS: 52.80.Mg

1. В современной светотехнике для улучшения характеристик источников света используется импульсный режим питания. Теоретические исследования режимов горения импульсных разрядов атмосферного давления опираются на использование уравнений радиационной газодинамики (см., например, [1-5]). В ранее выполненных работах использовалась модель локального термодинамического равновесия (ЛТР) с единой температурой для электронов и тяжелых частиц. В настоящем сообщении формулируется двухтемпературная модель импульснопериодического излучающего разряда (ИПР) высокого давления в цезии и приводятся первые результаты исследования такого разряда. Исследуются режимы горения разряда, представляющие наибольший интерес с точки зрения создания на его основе эффективного источника света: при давлении p = 1-3 atm, частоте следования импульсов $v = 800 \div 2000$ Hz, максимальном токе $I_{\text{max}} = 50-200$ A и радиусе трубки R = 1.5-4 mm. В этих условиях температура на оси разряда достигает 5000 \div 600 K, концентрация плазмы $n_e \sim 10^{17} - 10^{18} \,\mathrm{cm}^{-3}$ и оптическая толщина столба плазмы близка к единице.

86

2. В рассматриваемых условиях каждая компонента плазмы находится в состоянии ЛТР, и, кроме того, реализуются существенно дозвуковые течения компонент плазмы. Критерии установления ЛТР в излучающей однотемпературной цезиевой плазме были ранее сформулированы в [6]. В рамках модели, рассматриваемой в настоящей статье, полагается, что температура T атомов и ионов отличается от температуры электронов T_e . Система уравнений радиационной плазмодинамики имеет при этом следующий вид:

$$\frac{\partial}{\partial t}(n_i + n_a) + \frac{1}{r}\frac{\partial}{\partial r}\left[r(n_a V_a + n_i V_i)\right] = 0, \tag{1}$$

$$\frac{\partial}{\partial r}p_a = n_a n_i R_{ai} (V_i - V_a), \qquad (2)$$

$$\frac{\partial}{\partial r}\left(p_e + p_i\right) = n_i n_a R_{ai} (V_a - V_i),\tag{3}$$

$$\frac{\partial}{\partial t} \left(\frac{3}{2} p_e + n_a E_a + n_i E_i \right) + \frac{1}{r} \frac{\partial}{\partial r} \left\{ r \left[\frac{5}{2} p_e V_e + n_a V_a E_a + n_i V_i E_i \right] \right\}$$
$$= \sigma_e E_z^2 + \frac{1}{r} \frac{\partial}{\partial r} r \lambda_e \frac{\partial T_e}{\partial r} - U_{rad} - \Delta S_{ea} - \Delta S_{ei}, \qquad (4)$$
$$\frac{\partial}{\partial r} \left(3 p_e + 3 p_e \right) + \frac{1}{r} \frac{\partial}{\partial r} \left[5 p_e V_e + 5 p_e V_e \right] \right\}$$

$$\left(\frac{3}{2}P_{a} + \frac{3}{2}p_{i}\right) + \frac{1}{r}\frac{\partial}{\partial r}\left\{r\left[\frac{3}{2}p_{a}V_{a} + \frac{3}{2}p_{i}V_{i}\right]\right\}$$
$$= \frac{1}{2}\frac{\partial}{\partial r}r\lambda_{a}\frac{\partial T}{\partial r} + \Delta S_{ea} + \Delta S_{ei}, \qquad (5)$$

$$= \frac{1}{r} \frac{\partial r}{\partial r} r \lambda_a \frac{\partial r}{\partial r} + \Delta S_{ea} + \Delta S_{ei}, \qquad (5)$$

$$I(t) = 2\pi E(t) \int_{0}^{\infty} \sigma_{e}(r) r dr.$$
 (6)

Здесь p_i , p_e , p_a и n_i , n_e , n_a — парциальные давления и концентрации ионов, электронов и атомов цезия; V_i , V_e , V_a — их радиальные гидродинамические скорости (предполагается, что радиальный ток на стенки отсутствует и $V_i = V_e$), $T_e(r, t)$ и T(r, t) — температуры электронов и тяжелой компоненты плазмы, σ_e — электронная электропроводность, λ_e и λ_a — электронная и атомная теплопроводности, $E_i E_a$ — энергия ионизации и усредненная по распределению Больцмана (с температурой электронов) энергия возбуждения атомов цезия, ΔS_{ea} и ΔS_{ei} —

Письма в ЖТФ, 2007, том 33, вып. 24

 ∂t

величины энергии, теряемой электронами при столкновениях с атомами и ионами, E_z — напряженность продольного электрического поля в плазме, U_{rad} — потери энергии на излучение с учетом реабсорбции. Методика расчета коэффициентов σ_e , λ_e , λ_a , R_{ai} и величины U_{rad} приведены в [5]. В правых частях уравнений (4) и (5) опущены малые по сравнению с $\sigma_e E_z^2$ слагаемые — $en_e E_r V_e$ и $en_i E_r V_i$, описывающие остывание и разогрев заряженных частиц в радиальном электрическом поле E_r . Поле E_r и радиальный ход потенциала $\varphi(r)$ находятся из уравнения движения электронов или ионов после того, как решена система уранений (1)–(6).

3. В работе рассматривается установившийся режим горения ИПР разряда, когда импульс тока заданной формы I(t) периодически пропускается через плазму, поддерживаемую слаботочным дежурным разрядом с током I_0 . При этом, как показано в [5], распределение температуры в стенке и масса M цезия на единицу длины трубки остаются постоянными в течение импульса. Стенка трубки считается прозрачной для излучения плазмы.

Граничные условия к уравнениям (1)–(5) имеют вид:

$$2\pi m_a \int_{0}^{\kappa} r(n_i + n_a) dr = M, \qquad \frac{\partial T_e}{\partial r}\Big|_{r=0} = \frac{\partial T}{\partial r}\Big|_{r=0} = 0,$$
$$T\Big|_{r=R} = T_W, \qquad q_e\Big|_{r=R} = \frac{j_{i0}}{e} \Delta E_0. \tag{7}$$

Здесь m_a — масса атома цезия;

$$j_{i0} = eD_a \frac{n_i(R)}{L_i\sqrt{2}} \tag{8}$$

— плотность ионного тока, отводимого из ЛТР плазмы на стенку трубки; $n_i(R)$ — концентрация заряженных частиц на границе $(r \approx R)$ ЛТР плазмы с узким пристеночным ионизационным пограничным слоем (ПС); D_a — коэффициент амбиполярной диффузии; $L_i = (D_a \tau_i)^{1/2}$ — длина ионизации атомов Cs, $1/\tau_i = n_a \bar{v}_e \sigma_i (T_e)$ — обратное время ионизации, $\sigma_i(T_e)$ — эффективное сечение ионизации атома Cs (см. [7, с. 80–93 и с. 132–147]). Через q_e обозначена величина плотности потока энергии электронов на границе ЛТР плазмы с ионизационным ПС:

$$q_e\Big|_{r\approx R} = \frac{5}{2} n_e k T_e V_e - \lambda_e \frac{\partial T_e}{\partial r}\Big|_{r\approx R}.$$
(9)

В ионизационном ПС ионизация преобладает над рекомбинацией и условие ЛТР не выполняется. Через ΔE_0 в (7) обозначены потери энергии электронов в узком пристеночном слое, связанные с ионизацией атомов в ионизационном ПС и с эмиссией образовавшихся при этом электронов из плазмы на стенку через задерживающий потенциальный барьер U₀ в ленгмюровском слое (ЛС) пространственного заряда, который отделяет от стенки квазилинейную ($n_i \approx n_e$) плазму. В рассматриваемых условиях к ЛС прикладывается сравнительно небольшое напряжение $U_0 \approx$ нескольким kT_e/e , так что протяженность ЛС $L_0 \approx r_D \ll L_i$. Здесь $r_D = (kT_e/4\pi n_0 e^2)^{1/2} < l_i$ или $\sim l_i$, где l_i длина свободного пробега ионов, n_0 — концентрация плазмы на границе между ионизационным ПС и ЛС в точке, где выполняется критерий Бома, т.е. $V_i = (kT_e/m_i)^{1/2}$. При столь малой величине L_0 ЛС обычно можно считать почти бесстолкновительным для ионов. В результате электронный и ионный токи, отводимые из квазинейтральной плазмы на стенку, выражаются как [7, с. 80-93]:

$$j_{e,0} = \frac{1}{4} e n_0 \sqrt{8kT_e/\pi m_e} (1 - r_2) \exp(-eU_0/kT_e), \ j_{i0} = e n_0 \sqrt{kT_e/m_i}.$$
(10)

Здесь множитель $(1 - r_2)$ учитывает обеднение электронной функции распределения (ФР) на границе плазмы быстрыми электронами, вследствие их ухода на стенку. В рассматриваемых здесь условиях, при низких степенях ионизации, r_2 может иметь заметную величину. Приравнивая (8) и последнее выражение (10), можно выразить n_0 через $n_i(R)$. Напряжение U_0 определяется из условия $j_{i0} = j_{e0}$:

$$U_0 = \frac{kT_e}{e} \ln\left[(1 - r_2) \sqrt{\frac{m_i}{2\pi m_e}} \right].$$
 (11)

Отметим, что протяженность L_{ε} слоя, в пределах которого заметно обеднение ФР быстрыми электронами, мала по сравнению с L_i : $L_{\varepsilon}/L_i \sim 1/N_D$, где N_D — число частиц в дебаевской сфере. Поэтому отклонение ФР электронов от максвелловской в плазме, вблизи стенки, практически не влияет на скорость образования ионов в ионизационном ПС и на величину j_{i0} .

Поясним условие, накладываемое на температуру $T_e(r, t)$ на границе ЛТР плазмы со стенкой. Ввиду узости ионизационного ПС и ЛС, эту границу можно считать расположенной при $r \approx R$. Для постановки

граничного условия к T_e используется последнее уравнение (7) с учетом (8)–(11). Величина ΔE_0 в (7) определяется как $\Delta E_0 = E_i + eU_0 + \Delta E_e$, где E_i — энергия ионизации атома, $\Delta E_e = \langle (\varepsilon - eU_0 \rangle$ — тепловая энергия электронов, попадающих из плазмы на стенку. Символ $\langle \dots \rangle$ означает усреднение для энергий $\varepsilon > eU_0$ по ФР электронов в потоке $j_e(\varepsilon)$. Здесь $j_e(\varepsilon) = -eD_0[\partial F_{pl}(\varepsilon, x)/\partial x]_{x=0}$, $F_{pl}(\varepsilon, x) - \Phi$ Р электронов в потоке в плазме на границе плазмы со стенкой, D_0 — коэффициент диффузии электронов. Величина ΔE_e меняется от kT_e при $1 - r_2 \ll 1$ до $2kT_e$ при $r_2 \ll 1$. Основными по величине в рассматриваемом граничном условии являются слагаемые $\lambda_e \partial T_e/\partial r$ и $j_{i0}E_i/e$.

Температура внутренней поверхности трубки T_W определялась из решения стационарного уравнения теплопроводности для стенки трубки:

$$T_{W} = \left[\frac{q_{W}}{\varepsilon_{W}\sigma_{S.B.}(1+\Delta R/R)}\right]^{1/4} + q_{W}\frac{R}{\lambda_{W}}\ln\left(1+\frac{\Delta R}{R}\right),$$
$$q_{W} = -\nu \int_{0}^{1/\nu} \left(\frac{j_{i0}}{e}\Delta E_{0} + \lambda_{a}\frac{\partial T}{\partial r}\right)\Big|_{r=R}dt.$$
(12)

Здесь λ_W — теплопроводность стенки трубки, q_W — средний за период поток тепла из плазмы на стенку, ε_W — коэффициент теплового излучения внешней поверхности трубки, ΔR — толщина стенок.

4. На рис. 1-3 приведены результаты расчета ИПР в цезии для $R = 2.5 \text{ mm}, I_0 = 0.6 \text{ A}, v = 1000 \text{ Hz}, vt_p = 1/16$, где t_p — длительность импульса. Количество цезия на единицу длины трубки составляло $M = 6.0 \cdot 10^{-2} \, \text{mg/cm}$, что соответствует давлению насыщенных паров $P_{sat} = 290$ Torr у холодного конца трубки с температурой $T_{cold} = 850$ К. На рис. 1 изображены в относительных единицах: использованная в расчетах форма импульса тока $I(t)/I_{max}$, напряженность продольного электрического поля $E_z(t)/E_{\text{max}}$, температуры электронов $T_e(0,t)/T_{\text{max}}$ и ионов $T(0, t)/T_{\text{max}}$ на оси разряда, давление плазмы $0.6 \cdot P(t)/P_{\text{max}}$. Максимальные значения величин составляют $I_{\text{max}} = 110 \text{ A}, E_{\text{max}} = 97 \text{ V/cm},$ $T_{\rm max} = 6297 \, {\rm K}$ и $P_{\rm max} = 747 \, {\rm Torr.}$ Время отложено в единицах импульса t/t_p . Из рис. 1 и 2 видно, что в основном объеме плазмы, исключая пристеночную область, существенное отличие Те от Т имеет место лишь в начале импульса, на временах порядка времени передачи энергии при столкновениях от электронов к тяжелым частицам. Это отличие весьма существенно, так как в начальный момент времени

Рис. 1. Зависимость от времени параметров плазмы разряда (a - b) начале импульса, b - b течение импульса и в начале послесвечения). $1 - I(t)/I_{\text{max}}$; $2 - E_z(t)/E_{\text{max}}$ (кривая 6 - 3начения $e_z(t)/E_{\text{max}}$, которые получаются при тех же параметрах разряда, но в однотемпературном приближении, т.е. при $T_e = T$); $3 - T_e(0, t)/T_{\text{max}}$; $4 - T(0, t)/T_{\text{max}}$; $5 - 0.6 \cdot P(t)/P_{\text{max}}$.

Рис. 2. Радиальные распределения $T_e(r, t)$ (сплошные кривые) и T(r, t) (пунктир) в различные моменты времени. Время в единицах t/t_p указано на кривых.

 $(t/t_p < 0)$ оно приводит к весьма сильному уменьшению E_z (см. рис. 1, *a*), а вместе с тем и полного напряжения на разряде, по сравнению с однотемпературной моделью. На бо́лыших временах (см. рис. 1, *b* и 2) температуры T_e и *T* практически совпадают в плазме, исключая пристеночную область, откуда энергия, получаемая тяжелыми частицами от электронов, отводится за счет теплопроводности на стенку трубки. В конце импульса пристеночная область отрыва температур сужается. Это приводит к образованию теплового ПС в распределении T(r, t) (см., например, кривую $t/t_p = 1.0$ на рис. 2). Соответствующее резкое увеличение теплового потока q_W , переносимого на стенку тяжелыми частицами, налагает предел на длительность импульса t_p . Отметим, что тепловыделение на стенке за счет амбиполярного потока заряженных вносит обычно лишь незначительный (~ нескольких %) вклад в тепловой поток из плазмы на стенку.

Отметим также, что в начале импульса, когда температура T_e в плазме, и особенно в пристеночном слое, еще относительно мала,

Рис. 3. Усредненный по времени спектр выходящего из плазмы излучения.

модель ЛТР, предполагающая наличие в плазме одних лишь атомарных ионов Cs⁺ и детального равновесия между процессом ионизации атомов Cs и столкновительной трехчастичной рекомбинации ионов Cs⁺, должна быть дополнена процессами конверсии ионов Cs⁺ в молекулярные ионы Cs2⁺ с последующей диссоциативной рекомбинацией молекулярных ионов [8]. При рассматриваемом здесь давлении процессы с участием молекулярных ионов становятся существенными при $T_e \leq (2500 - 2700 \,\mathrm{K})$, когда скорость конверсии по схеме $Cs^+ + 2Cs \rightarrow Cs^+_2 + Cs$ становится сравнимой со скоростью трехчастичной электрон-ионной рекомбинации. При бо́льших значениях Те образованием ионов Cs_2^+ в плазме и в пристеночных слоях можно пренебречь. В рассматриваемом здесь примере расчета такая ситуация реализуется при $t/t_p > 0.3$, когда в ИПР вкладывается примерно 80% электрической мощности: именно за это время практически и формируется спектр излучения разряда, который, в основном, близок к непрерывному спектру, получаемому в однотемпературной модели (см. рис. 3, а также [5,9]). При этом ИПР в цезии является эффективным источником света с индексом цветопередачи $R_a = 97$ и световой эффективностью $\eta_V = 87 \, \text{lm/W}.$

5. В заключение отметим, что в настоящей работе сформулирована двухтемпературная модель импульсно-периодического излучающего разряда в цезии. Рассмотрена неравновесная пристеночная область, в которой состояние плазмы отклоняется от ЛТР. Рассчитаны основные параметры плазмы в импульсе и спектр излучения. Показано, что учет отрыва температур электронов и тяжелых частиц необходим для правильного определения максимального напряжения на разряде. Рассчитан спектр излучения разряда в видимой области и его светотехнические характеристики.

Авторы благодарят В.Г. Иванова за полезное обсуждение.

Работа выполнена при поддержке РФФИ (проект № 07-08-00600-а).

Список литературы

- [1] Chalek C.L., Kinsinger R.E. // J. Appl. Phys. 1981. V. 52. N 2. P. 716-723.
- [2] Азизов Э.А., Кобелевский А.В., Настоящий А.Ф. // Физика плазмы. 1986. Т. 12. В. 3. С. 362–369.
- [3] Аньшаков А.С., Назарук В.И., Хайтман С.М. // Теплофизика и аэромеханика. 1996. Т. 3. № 1. С. 81–84.
- [4] Бакшт Ф.Г., Лапшин В.Ф. // ЖТФ. 1996. Т. 66. В. 11. С. 170–177.
- [5] Бакшт Ф.Г., Лапшин В.Ф. // Прикладная физика. 2006. № 6. С. 63-72.
- [6] Бакшт Ф.Г., Лапшин В.Ф. // ЖТФ. 2002. Т. 72. В. 7. С. 100–105.
- [7] Энциклопедия низкотемпературной плазмы. Вводный том II / Под ред. В.Е. Фортова. М.: Наука, 2000.
- [8] Бакшт Ф.Г., Иванов В.Г. // ЖТФ. 1978. Т. 48. В. 4. С. 688–699.
- [9] Бакшт Ф.Г., Лапшин В.Ф. // Письма в ЖТФ. 2004. Т. 30. В. 24. С. 70-76.