^{03,04} Высокотемпературная теплоемкость оксидов системы GeO₂-PbO

© В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 8 июля 2010 г. В окончательной редакции 20 сентября 2010 г.)

Получены данные по теплоемкости оксидов Pb_3GeO_5 , $Pb_5Ge_3O_{11}$, $PbGeO_3$ и $PbGe_3O_7$ в широком диапазоне температур.

1. Введение

Изучение теплофизических параметров оксидных соединений системы GeO₂-PbO имеет как научное, так и прикладное значение в связи с их важными с практической точки зрения свойствами [1–5].

Целью настоящей работы является исследование высокотемпературной теплоемкости оксидных стекол и кристаллов системы GeO₂-PbO.

2. Эксперимент

Измерение теплоемкости C_p оксидов GeO₂-PbO проводилось по методике, описанной ранее [6]. Все измерения выполнялись в платиновых тиглях. Получение материалов GeO2-PbO связано с рядом трудностей. Так, например, в связи с близостью температур спекания и плавления PbGeO3 керамика, полученная при 943-963 К, несмотря на нулевую открытую поверхность, имеет неоднородную структуру [2]. При синтезе шихты и роста монокристаллов Pb5Ge3O11 нельзя полностью предотвратить потерю летучего компонента PbO, если не поддерживать постоянным парциальное давление этого оксида в окружающей атмосфере [7]. Существует мнение, что подобная ситуация является общей при получении свинецсодержащих соединений [8]. Кроме того, учитывалось, что при анализе фазовых равновесий в системе GeO2-PbO разными авторами было получено несколько различных диаграмм состояния [9–13], которые различаются как по количеству химических соединений, так и по составу.

С учетом указанного контроль полученных образцов GeO₂-PbO проводился с использованием рентгенофазового анализа (Х'Pert Pro фирмы "Panalytical", Нидерланды), и рентгенофлуоресцентного анализа (ARL Advant'x (с программным обеспечением UniQvant) и Quant'x (Thermo)). В последнем случае учтены данные [14] о том, что отношение между интенсивностями хорошо изолированных пиков Ge K_{α} и Pb K_{β} могут быть использованы для оценочного контроля реального химического состава стекол. Так, например, рентгеновские флуоресцентные спектры стекол, содержащих 50 mol.% GeO₂ (PbGeO₃), показывают наличие следующих основных пиков: Ge K_{α} (9870 eV), Pb L_{α} (10550 eV), Ge K_{β} (10980 eV), Pb L_{β} (12610 eV), Pb L_{γ} (14750 eV), что совпадает с результатами [14] (9855, 10449, 10982, 12613, 14766 eV соответственно) и достаточно хорошо согласуется с номинальным отношением Ge/Pb и подтверждает правильность приготовления образцов.

Для уточнения структуры некоторых стекол и кристаллов GeO₂—PbO были получены рамановские спектры на КР-дисперсионном спектрометре Almeda (Thermo). Регистрация спектров для стекол проводилась в диапазоне 97–1200 сm⁻¹ с разрешением 4 сm⁻¹ и с накоплением 128 сканов при комнатной температуре, а для кристаллов — в диапазоне 100–1271 сm⁻¹ с разрешением 2.5 сm⁻¹ и с накоплением 256 сканов. В качестве когерентного источника излучения использован диодный лазер ($\lambda = 785$ nm). Применялись прессованные порошкообразные образцы.

Дифференциальная сканирующая калориметрия (DSC) проведена на приборе STA 449 С Jupiter с анализом газовой фазы с использованием квадрупольного масс-спектрометра QMS.

3. Результаты и их обсуждение

Температурная зависимость C_p кристаллов Pb₃GeO₅ показана на рис. 1. Из этого рисунка следует, что в измеренном интервале температур значения C_p закономерно увеличиваются, а на зависимости $C_p = f(T)$ нет различного рода экстремумов. Полученные значения $C_p = f(T)$ могут быть описаны соотношением (в единицах J/(mol·K))

$$C_p = a + b \cdot 10^{-3}T - c \cdot 10^5 T^2$$

= 143.42 + 123.20 \cdot 10^{-3}T - 37.68 \cdot 10^5 T^2. (1)

Это позволяет определить $H_T^0 - H_{298}^0$ (J/mol) по известному термодинамическому уравнению. Результаты расчета приведены в табл. 1.

Рис. 1. Температурная зависимость C_p кристаллов Pb₃GeO₅.

Рис. 2. Влияние температуры на теплоемкость кристаллов Pb₅Ge₃O₁₁. *1* — данные [15], *2* — [16], *3* — наши данные.

Теплоемкость кристаллов Pb5Ge3O11 была изучена ранее. Суммарные результаты этих измерений в области температур 2-670 К приведены на рис. 2. Здесь же представлены и наши результаты для более высоких температур (360-911 К). Из рис. 2 следует, что в целом получены согласующиеся данные. Тем не менее можно отметить следующее. В нашем случае не так сильно увеличиваются значения C_p с ростом температуры, как по данным авторов работы [16]. На зависимости $C_p = f(T)$ кристаллов Pb₅Ge₃O₁₁ в области температур, где происходит изменение спонтанной поляризации [15], наблюдается дополнительный вклад в теплоемкость с характерным для фазовых переходов второго рода пиком в точке Кюри Т_с. По нашим данным этот пик практически совпадает со значением Т_с и не так сильно выражен по сравнению с данными [16]. Кроме этого пика в [16] на кривой $C_p = f(T)$ отмечен слабовыраженный экстремум при 570 К. Нами его наличие не подтверждено.

При температурах выше 840 К теплоемкость C_p превышает классический предел Дюлонга-Пти 3*Rs*, где *R* — универсальная газовая постоянная, *s* — число атомов в формульной единице Pb₅Ge₃O₁₁ (*s* = 19). Известно, что при сравнении измеренных значений теплоемкости со значением 3*Rs* необходимо рассматривать удельную теплоемкость при постоянном объеме C_v , а не C_p . Определение C_v на основании найденных величин C_p проведено нами с помощью уравнения [17]

$$C_p = C_v (1 + 3\gamma_G \alpha T), \tag{2}$$

где γ_G — постоянная Грюнайзена, α — температурный коэффициент линейного расширения. Значения γ_G взяты из [16], а α — из [15]. Рассчитанные значения C_v приведены в табл 2. Здесь же представлены величины $H_T^0 - H_{298}^0$, определенные по значениям C_p в интервале температур 470–911 К (J/mol·K)

$$C_p = 365.04 + 122.20 \cdot 10^{-3}T + 39.80 \cdot 10^5 T^{-2}.$$
 (3)

Из табл. 2 следует, что C_p и C_v не сильно различаются между собой. Тем не менее дилатационная поправка несколько уменьшает рост теплоемкости с температурой (в этом случае даже при максимальной температуре 900 К теплоемкость C_v не превышает классический предел Дюлонга-Пти $3Rs = 473.5 \text{ J/(mol} \cdot \text{K})$).

Таблица 1. Термодинамические свойства Pb₃GeO₅

<i>Т</i> , К	$H_T^0 - H_{298}^0$, J/mol
400	22239
450	33075
500	44009
550	55098
600	66384
650	77888
700	89631
750	101627
800	113886
850	126416
900	139223
950	152313
1000	165688

Таблица 2. Термодинамические функции Pb₅Ge₃O₁₁

<i>Т</i> , К	C_p , J/(mol · K)	$C_v, \mathrm{J/(mol \cdot K)}$	$H_T^0 - H_{298}^0$, J/mol
470	439.67	437.03	65970
500	441.91	438.27	78192
600	449.54	444.92	120090
700	458.48	448.73	163589
800	468.72	462.14	208547
900	480.27	472.61	254886

Экспериментальные результаты по определению теплоемкости стекол PbGeO₃ приведены на рис. 3. Видно, что с ростом температуры наблюдается плавный рост C_p . На кривой $C_p = f(T)$ при определенной температуре наблюдается характерный максимум. Можно предположить, что этот максимум связан с процессами расстекловывания. Кинетика этого процесса для PbGeO₃ подробно изучена авторами работы [18]. Было установлено, что на DSC кривых этого стекла при скорости нагрева 10 K/min наблюдаются экстремумы 643, 703 и 843 K (отмечено, что при изменении скорости нагрева от 0.1 до 50 K/min положения этих пиков сдвигаются в область более высоких температур). Первый из этих пиков был отнесен [18] к процессу кристаллизации, а второй к переходу метастабильное—стабильное состояние.

Согласно DSC (на графике не показано), по нашим данным первый пик соответствует температуре 659 K, а

Рис. 3. Температурная зависимость теплоемкости стекол PbGeO₃.

Рис. 4. Зависимость стандартной теплоемкости от состава системы GeO_2 -PbO. *1* — наши данные, *2* — данные [20], *3* — [15].

Таблица 3. Термодинамические функции PbGeO₃ и PbGe₃O₇

PbGeO ₃		PbGe ₃ O ₇	
Τ, Κ	$H_T^0 - H_{298}^0$, J/mol	Т, К	$H_T^0 - H_{298}^0$, J/mol
350	5637	320	7490
400	11151	350	17421
450	16759	400	33439
500	22461	450	48988
550	28258	500	64214
600	34151	550	79210
650	40140	600	94039
		640	105811

третий — температуре 826 К (второй пик мы не наблюдали). Последующий пик соответствовал температуре плавления PbGeO₃.

Подобные зависимости $C_p = f(T)$ получены нами и для стекол PbGe₃O₇, Pb₅Ge₃O₁₁ и эвтектического состава GeO₂ + 40 mol.% PbO.

Заметим, что по данным [19] аномальный рост C_p стекол на кривой $C_p = f(T)$ может быть связан с размягчением стекла, сопровождающимся эндотермическим тепловым эффектом.

До температуры расстекловывания $PbGeO_3$ зависимость C_p от температуры может быть аппроксимирована уравнением ($J/(mol \cdot K)$)

$$C_p = 95.41 + 0.388 \cdot 10^{-3}T - 0.45 \cdot 10^5 T^2.$$
 (4)

Для стекла PbGe₃O₇ зависимость $C_p = f(T)$ в интервале температур 320–640 К может быть описана уравнением (J/(mol · K))

$$C_p = 273.50 + 7.69 \cdot 10^{-3}T - 61.57 \cdot 10^5 T^2.$$
 (5)

Рассчитанные по уравнениям (4) и (5) значения $H_T^0 - H_{298}^0$ (J/mol) для PbGeO₃ и PbGe₃O₇ приведены в табл. 3.

На рис. 4 показана связь между стандартной теплоемкостью C_p^0 и составом системы GeO₂-PbO (для того чтобы включить в эту зависимость и другие исследованные нами составы, для которых нельзя значения C_p^0 представить на моль соединения, эти данные приведены в J/(g·K)). Из рис. 4 следует, что имеется определенная корреляция между составом оксидов системы GeO₂-PbO и стандартной теплоемкостью. Кроме того, имеется и корреляция наших результатов с имеющимися данными для этой системы.

Сравнение значений C_p^0 для оксидов GeO₂-PbO (рис. 4) показывает, что они убывают по мере роста содержания PbO. Это находится в согласии с эффектом атомных масс: фононные частоты должны лежать ниже для оксидов с высоким содержанием PbO, что приводит к уменьшению температуры Дебая и соответственно теплоемкости оксидов с более высоким содержанием тяжелых атомов. Это, по-видимому, обусловлено тем,

что основной вклад в решеточную теплоемкость анализируемых стекол определяется низкочастотными колебаниями Pb–O-связей, которые наблюдаются на рамановских спектрах уже при малых концентрациях PbO в стеклах [21].

Рамановские спектры стекол $x \text{PbO}-(1-x)\text{GeO}_2$ (x = 0, 0.1, 0.2, 0.3, 0.4) в [4] представлены в сравнении с чистым GeO₂. Они составляют основную полосу 419 cm⁻¹, плечо 520 cm⁻¹ и две полосы при 850 и 950 cm⁻¹. Основная полоса 419 cm⁻¹ отнесена к симметричным упругим колебаниям кислорода между двумя атомами германия.

Плечо при 520 ст⁻¹ названо "дефектной полосой" и приписано колебаниям колец, состоящих из трех тетраэдров GeO₄. Добавление PbO к GeO₂ вызывает появление полос при 100 и 800 ст⁻¹. Эти полосы соответствуют оптическим модам, отвечающим соответственно колебаниям Pb–O и симметричным упругим колебаниям между атомом германия и немостиковым кислородом. Рост концентрации PbO сдвигает основную полосу в область более высоких значений фононной энергии, а дефектная полоса сдвигается в область более низких частот.

По нашим данным из рамановских спектров следует, что в стекле GeO_2 -PbO с содержанием 60 mol.% GeO_2 наблюдаются полосы при 800 и 511 cm⁻¹. В стекле с содержанием 50 mol.% GeO_2 они наблюдаются при 786 и 511 cm⁻¹. Для кристаллического Pb₃GeO₅ они проявляются в виде комплекса полос подобно данным, полученным ранее авторами [21].

С использованием нейтронографии авторы работы [22] изучали структуру стекол 3PbO · 3GeO₂-GeO₂, РbO · GeO₂-GeO₂ и PbO · 4GeO₂-GeO₂. Отмечено, что координационное число Ge-O увеличивается с ростом содержания PbO. Это было принято за присутствие более высоко координированной единицы (октаэдров $[GeO_6]$) в отличие от тетраэдров $[GeO_4]$, обнаруженных в чистом стеклообразном GeO2. Для стекла с самым высоким содержанием PbO отношение шестикратно координированного Ge к четырехкратно координированному Ge примерно равно 1:3. Есть мнение [21], что в настоящее время необходимо использовать обоснованные значения в порядке пересмотра адекватности интерпретации германатной аномалии, основанной на изменении координационного числа германия с 4 до 6, установленной ранее для щелочно-германатных стекол [23] и детально рассмотренной в недавней работе [24].

Указанные особенности взаимодействия в системе GeO_2 -PbO могут быть связаны как со свойствами германатов свинца, так и со свойствами индивидуальных оксидов. Так как отношение подвижности электронных и ионных носителей равно $10^3 - 10^6$, считается [7], что основной вклад в изменение электропроводности происходит за счет электронных дефектов (дырок). Поскольку катионы германия Ge^{4+} в структуре германатов свинца имеют наиболее высокий уровень окисления, локализация дырок происходит на ионах свинца. При этом

повышается валентное состояние свинца с Pb^{2+} до Pb^{4+} (на основании изучения спектров ЭПР делается вывод о возможности образования Pb^{3+}).

Величины нормализованной молярной теплоемкости Pb₃GeO₅, Pb₅Ge₃O₁₁, PbGeO₃ и PbGe₃O₇, рассчитанные по соотношению $C_p^* = C_p^0/s$, равны соответственно 24.70, 21.33 (21.01 [15]), 21.29 и 18.80 J/(mol · K). Из этого следует, что для Pb₅Ge₃O₁₁ наши данные совпадают с результатами [15]. Кроме того, наблюдается четкая закономерность: при переходе последовательно от Pb₃GeO₅ (3:1) к PbGe₃O₇ (1:3) происходит постепенное уменьшение C_p^* .

4. Заключение

Исследованы температурные зависимости теплоемкости C_p кристаллов Pb₃GeO₅, Pb₅Ge₃O₁₁, PbGeO₃ и стекол Pb₅Ge₃O₁₁, PbGeO₃, PbGe₃O₇. Показано, что теплоемкость Pb₅Ge₃O₁₁ при постоянном объеме при повышении температуры стремится к классическому пределу 3*Rs* Дюлонга и Пти. Установлено, что имеется корреляция между значениями стандартной и нормализованной теплоемкости и составом оксидов GeO₂-PbO.

Список литературы

- В.М. Денисов, С.А. Истомин, О.И. Подкопаев, Н.В. Белоусова, Э.А. Пастухов, Л.И. Серебрякова, Т.О. Квасова. Германий, его соединения и сплавы. УрО РАН, Екатеринбург (2002). 599 с.
- [2] О.С. Дидковская, В.В. Климов. Изв. АН СССР. Неорган. материалы 16, 11, 2071 (1980).
- [3] А.А. Буш, Ю.Н. Веневцев. Монокристаллы с сегнетоэлектрическими и родственными свойствами в системе PbO-GeO₂ и возможные области их применения. НИИТЭЧИМ, М. (1981). 70 с.
- [4] A. Céreyon, B. Champagnon, V. Martinez, L. Maksimov, O. Yanush, V.V. Bogdanov. Opt. Mater. 28, 1301 (2006).
- [5] M. Pisecki, I.V. Kityk, P. Bragiel, L.R.P. Kassab, D.M. da Silva. Mater. Lett. 61, 2943 (2007).
- [6] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ 52, 7, 1274 (2010).
- [7] В.М. Дуда, А.И. Баранов, А.С. Ермаков, Р.С.Т. Стэйд. ФТТ 48, 1, 59 (2006).
- [8] Б. Яффе, У. Кук, Г. Яффе. Пьезоэлектрическая керамика. Мир, М. (1974). 288 с.
- [9] Диаграммы состояния систем тугоплавких оксидов. Справочник. В. 5. Двойные системы. Ч. 1 / Под ред. Ф.П. Галахова. Наука, Л. (1985). 284 с.
- [10] M. Scavini, C. Tomasi, A. Speghini, M. Bettielli. J. Mater. Synth. Proc. 9, 2, 93 (2001).
- [11] В.П. Жереб, В.И. Кирко, Л.С. Тарасова, С.М. Маркосян, А.М. Жижаев, М.С. Эльберг, С.В. Супрунец. ЖНХ 53, 2, 356 (2008).
- [12] H. Hasegawa, M. Shiwada, M. Koizumi. J. Mater. Sci. 8, 1725 (1973).
- [13] W.K. Swicker, M. Delfono, J.P. Dougherry, A. Sicignano, J. Ladell, J.A. Nicolosi. J. Electron. Mater. 6, 2, 125 (1977).

- [14] L. Červinka, J. Bergerová, V.N. Sigaev, F. Rocca. J. Non-Cryst. Solids 293–295, 502 (2001).
- [15] А.А. Буш, Е.А. Попова. ФТТ 46, 5, 875 (2004).
- [16] С.А. Иванов, С.А. Чорней, В.П. Михальченко, С.Г. Тарасов, Ю.Н. Веневцев. ФТТ **21**, *9*, 2545 (1979).
- [17] А.Ф. Прекул, В.А. Казанцев, Н.И. Щеголихина, Р.И. Гуляева, К. Edagawa. ФТТ **50**, *11*, 1933 (2008).
- [18] C. Tomasi, M. Scavini, A. Speghini, M. Bettinelli, M.P. Riccardi. J. Thermal Analysis Calorimetry 70, 151 (2002).
- [19] А.А. Аппен. Химия стекла. Химия, М. (1970). 352 с.
- [20] Физико-химические свойства окислов. Справочник / Под ред. Г.В. Самсонова. Металлургия, М. (1978). 472 с.
- [21] I.A. Mukhitdinova, G.A. Sycheva, O.V. Yanusch, L.V. Maksimov, N.S. Markova. Opt. Mater. 28, 1309 (2006).
- [22] N. Umesaki, T.M. Brunier, A.C. Wright, A.C. Hannon, R.N. Sinclair. Physica B 213–214, 490 (1995).
- [23] Г. Роусон. Неорганические стеклообразующие системы. Мир, М. (1970). 312 с.
- [24] G.S. Henderson. J. Non-Cryst. Solids 353, 1695 (2007).