07 Эффект пространственно-временной синхронизации доменных осцилляций в системе электроконвекции нематических жидких кристаллов

© В.А. Делев, О.А. Скалдин, Ю.И. Тимиров

Институт физики молекул и кристаллов УНЦ РАН, Уфа E-mail: scala@anrb.ru

В окончательной редакции 10 февраля 2009 г.

Методами оптической дифракции и временно́го Фурье-анализа интенсивности прошедшего через ячейку с НЖК света изучена динамика нестационарной псевдогексагональной доменной структуры, которая возникает при электроконвекции в нематических жидких кристаллах в постоянном электрическом поле. Исследован процесс эволюции системы от невозмущенного состояния до режима развитых доменных осцилляций. Обнаружено, что выше порога, электрогидродинамической неустойчивости в планарных слоях НЖК имеет место пространственно-временна́я синхронизация доменных осцилляций во всем ЖК-образце с образованием сверхрешетки, узлами которой являются источники фазовых волн.

PACS: 61.30-v

Синхронизация как фундаментальное явление известно достаточно давно в механических колебательных системах [1], однако наибольший интерес представляет ее реализация в распределенных системах осцилляторов [2–4]. В настоящее время хорошо изучены одномерные системы, например состоящие из двух осцилляторов, и автогенераторы [5]. Однако проблемы синхронизаци в квазидвумерной системе осцилляторов, механизмы самоорганизации в более сложные структуры, процессы образования и разрушения сверхрешеток остаются до сих пор слабо исследованными [2]. С этой точки зрения жидкие кристаллы являются хорошими модельными средами, в которых реализуется развитие динамической неустойчивости в доменных структурах, например в системе электрогидродинамической (ЭГД) конвекции нематиков [6]. В частности, при исследовании процесса перехода от стационарной доменной

49

структуры до ее турбулизации выше порога ЭГД-неустойчивости был обнаружен режим, когда доменные осцилляции самоорганизуются в концентрические и спиральные фазовые волны, которые не интерферируют, не отражаются от ЖК-границы и аннигилируют при встрече [7,8]. Исследование этого процесса имеет и практическую значимость для разработок оптических систем преобразователей информации, автогенераторов на жидких кристаллах при управляющем постоянном поле.

Поэтому целью настоящей работы было исследование процесса пространственно-временной синхронизации доменных осцилляций и механизмов их самоорганизации в сверхрешетку, узлами которой являются источники фазовых волн.

Ячейка с НЖК *n*-метоксибензилиден-*n*-бутиланилином (МББА) помещалась на предметный столик поляризационно-оптического микроскопа Amplival-Pol.U с фотометрической приставкой СФН-10. Подсветка осуществлялась когерентным источником света типа ЛГИ-105. Все исследования проводились при исходной планарной ориентации директора **n**. Для получения однородной ориентации молекул проводящие поверхности подложек натирались в одном направлении. Расстояние между подложками задавалось слюдяными прокладками толщиной $d = 25 \,\mu$ m. Измерения проводились при температуре $T = 25 \pm 0.10^{\circ}$ С в постоянном электрическом поле. Прошедший через ячейку с НЖК поляризованный свет с интенсивностью I(t), промодулированный во времени локальным изменением оптической анизотропии $\langle \Delta n \rangle$, регистрировался фотоэлектронным умножителем. После чего сигнал оцифровывался и обрабатывался на компьютере.

При достижении порогового напряжения $U_c = 8$ V, которое не зависит от толщины d ЖК-слоя, происходит периодическая деформация однородной ориентации поля директора, что приводит к образованию стационарной двумерной в плоскости ХОУ решетки псевдогексагональных доменов (ПГД) (рис. 1, a) [7]. При $U > U_c$, когда ПГД-структура теряет устойчивость, $\langle \Delta n \rangle$ будет также изменяться во времени. Поэтому анализ рассеянного света, прошедшего через достаточно большую площадь ЖК-ячейки, позволяет получить усредненную (интегральную) по пространству информацию о поведении нестационарной доменной структуры. В данной работе исследовались как локальные характеристики доменных осцилляций, так и усредненные по пространству (ХОҮ) ЖК-слоя. Локальные характеристики были получены методом регистрации прошедшего света при помощи зонда, размер которого

Рис. 1. Стационарная ПГД-структура при постоянном напряжении $U_c = 8 \text{ V}(a)$; фазовые волны при постоянном напряжении $1.4U_c(b)$ и осциллирующая ПГД-структура при приложенном к ЖК-слою напряжении типа меандр $1.4U_c(c)$. На вставках показаны соответствующие картины рассеяния.

сравним с размером осциллирующего доменного блока. Усредненные по пространству характеристики получены методом регистрации и анализа интенсивности рефлексов дифракционной картины на нестационарной доменной структуре.

Рассмотрим процесс эволюции НЖК от невозмущенного состояния (U = 0 V) до режима развитых доменных осцилляций при $U = 1.4 U_c$, когда постоянное напряжение подается к ЖК-слою скачком. При включении напряжения $U = 1.4U_c$ вначале образуется ПГД-решетка, которая сразу начинает осциллировать. Через t = 20 s домены объединяются в осциллирующие блоки, размер которых вначале растет. Достигнув критического размера (порядка ширины ЖК-ячейки), что свидетельствует о возникновении когерентных осцилляций, решетка доменов перестает осциллировать как единое целое и разбивается на более мелкие блоки. Это указывает на то, что происходит расфазировка доменных осцилляций во всей системе, которая приводит к тому, что соседние блоки начинают осциллировать в противофазе с одновременной генерацией фазовых волн (рис. 1, b). Таким образом, в процессе перехода происходит перестройка от синфазно осциллирующих доменов к блокам, которые продолжают осциллировать синхронно, но с противоположной фазой. Т.е. генерация фазовых волн начинается, когда сдвиг фаз между соседними осциллирующими блоками достигает величины $\Delta \varphi_{ii} = \pi.$

Временная реализация и спектр мощности такого переходного процесса представлены на рис. 2. Как следует из вставки на рис. 2, реализацию переходного процесса можно разбить на три участка: участок *1* соответствует несогласованным осцилляциям доменов, участок *2* — образованию доменных блоков и их расфазировке, участок *3* — частотной синхронизации волновых источников во всей системе, что также подтверждается наличием соответствующей спектральной линии в спектре мощности интенсивности света, рассеянного нестационарной ПГД-структурой (рис. 2). По-видимому, причиной расфазировки является так называемый "шум" (ЭГД-флуктуации, дефекты на подложках и т.д.), который всегда присутствует в реальных системах.

Для определения условий реализации эффекта синхронизации экспериментально необходимо оценить фазы и частоты по измеряемым данным. Если частоты осицлляторов равны и сдвиг фаз равен 0 или постоянен, то система совершает синхронные (синфазные или противофазные) колебания [1]. Для исследования локальных частотных

Рис. 2. Временная реализация (на вставке) и спектр мощности переходного процесса от невозмущенного состояния до режима генерации фазовых волн, когда приложенное к ЖК-слою напряжение подается ступенькой от U = 0 V до $1.4U_c$.

характеристик были измерены спектры мощности прошедшего света, промодулированного осцилляциями отдельных доменных блоков (когда размер зонда сравним с размером блока) в различных областях ЖКячейки. Было обнаружено, что частота осцилляций различных доменных блоков во всей ПГД-структуре практически одинакова. Типичный спектр мощности уже стабилизировавшихся осцилляций отдельного блока показан на рис. 3, кривая *1*. Несмотря на то что у доменов, образующих блок, фаза осцилляций одна и та же, шум также присутствует и в спектрах мощности осцилляций отдельных блоков.

Для экспериментального наблюдения факта пространственной синхронизации осцилляций доменных блоков по частоте было исследовано рассеяние света всей осциллирующей ПГД-структурой методом дифракции. Установлено, что в режиме генерации фазовых волн при $U = 1.4U_c$ интенсивность диагональных пар рефлексов дифракционной картины [11] и [$\overline{11}$] или [$\overline{11}$] и [1 $\overline{1}$] периодически меняется (см. рис. 1, *b*, вставка). Это связано с азимутальными осцилляциями [9] доменов

Рис. 3. Спектры мощности локальных осцилляций отдельного доменного блока (1) и усредненных по пространству доменных осцилляций во всей ПГД-структуре (2) при 1.4U_c.

в блоках вдоль кристаллографических направлений исходной ПГДструктуры. Такие периодические колебания интенсивности рефлексов возможны лишь в том случае, когда азимутальные осцилляции доменов в блоках происходят согласованно во всей осциллирующей ПГДструктуре, что в свою очередь говорит о не только их временной, но и пространственной синхронизации.

Другим подтверждением эффекта пространственно-временной синхронизации является полная идентичность локального спектра мощности осцилляций отдельного доменного блока (рис. 3, кривая 1) и усредненного по пространству временного спектра мощности колебаний одного из рефлексов дифракционной картины (размер зонда сравним с размером рефлекса) (рис. 3, кривая 2).

Для получения усредненной характеристики разброса частот осциллирующих блоков во всей ПГД-структуре вычислялась разность эффективной ширины спектра мощности, усредненного по пространству, и эффективной ширины спектра осциллирующего отдельного блока.

Эффективная ширина спектра мощности вычислялась по формуле [10]:

$$\Delta f_{eff} = \frac{1}{P_{\max}} \int P(f) df$$

В частности, при $1.4U_c$ данная величина для отдельного блока равна $\Delta f_{bl} \sim 0.15$ Hz, а усредненная для всей системы осциллирующих блоков $\Delta f_{GP} \sim 0.26$ Hz. Таким образом, разница двух этих величин $\langle \Delta f \rangle = \Delta f_{GP} - \Delta f_{bl} = 0.11$ Hz может служить усредненной количественной характеристикой разброса частот осцилляций источников фазовых волн, который возникает из-за присутствия в системе как внутренних (ЭГД-флуктуации директора **n**), так и внешних шумов (температуры).

Необходимо подчеркнуть, что факт синхронизации колебаний в системах, состоящих из связанных осцилляторов, известен давно, однако пространственно-временная синхронизация доменных осцилляций в ЖК обнаружена впервые.

Окуда (Okuda) [11] для одномерного случая численно показал, что если связь между идентичными (т. е. имеющими одинаковые собственные частоты) фазовыми осцилляторами описывается некоторой обобщенной функцией связи $q(\varphi)$, то это может привести к образованию нескольких кластеров. При этом у осцилляторов, формирующих кластер, фаза одна и та же, а между различными кластерами существует постоянный сдвиг по фазе. В нашем случае кластром является осциллирующий доменный блок, в котором фаза осцилляций доменов одна и та же, а сдвиг фаз между соседними блоками равен $\Delta \phi = \phi_j - \phi_k = \pi$. Поэтому предложенная в [11] модель вполне пригодна и для нашего случая:

$$rac{d\phi_k}{dt} = \omega_0 + rac{arepsilon}{N} \sum_{j=1}^N q(\phi_j - \phi_k),$$

где ω_0 — собственная частота осцилляторов, ε — параметр, определяющий силу связи, N — число взаимосвязанных социлляторов, $\Delta \phi = \phi_j - \phi_k$ — сдвиг фаз между соседними осцилляторами.

Рассмотрим теперь случай, когда к ЖК-слою приложено электрическое поле типа меандр. Варьируя скважностью меандра, удалось пронаблюдать синхронизацию доменных осцилляций как по частоте, так и по фазе во всем ЖК-образце. В этом случае генерация и распространение фазовых волн не наблюдаются, и решетка доменов

осциллирует как единое целое (рис. 1, c). Такие синхронные осцилляции могут существовать достаточно длительное время (порядка t = 5 - 6 h). Однако следует отметить, что продолжает существовать граница между областями ПГД-структуры, где фаза доменных осцилляций отличается на л. С одной стороны, по-видимому, это связано с равновероятным возникновением осцилляций доменов (в один и тот же момент времени) как вдоль одного кристаллографического направления, так и вдоль другого. С другой стороны, экспериментально не удается получить идеальную ПГД-структуру без дефектов, поэтому, как показывает эксперимент, такая граница возникает рядом с дефектами исходной ПГД-структуры. В целом же нестационарную ПГД-структуру можно представить как континуум идентичных автоосцилляторов с диффузионными связями. Для наблюдения фазовых волн достаточно создать сдвиг по начальным фазам колебаний вдоль кристаллографических направлений такой решетки. Каждый такой автоосциллятор будет выходить из состояния равновесия через один и тот же промежуток времени, но моменты выхода из состояния равновесия сдвинуты для соседних элементов. Взаимодействие между автоколебательными элементами приводит к появлению частотной дисперсии фазовых волн от их пространственного периода, влияющей на процесс пространственновременной синхронизации доменных осцилляций по всем ЖК-образце, и образованию сверхрешетки, узлами которой являются источники фазовых волн.

Таким образом, в данной работе показано, что в интервале напряжений от $1.2 U_c$ и до $1.6 U_c$ существует режим пространственно-временной противофазной синхронизации источников фазовых волн. При этом усредненная расстройка по частоте составляет $\langle \Delta f \rangle \sim 0.11$ Hz при $1.4 U_c$. Когда к ЖК-слою приложено напряжение типа меандр, наблюдается синфазная синхронизация доменов во всем ЖК-слое, а расстройка по частоте отсутствует.

Работа выполнена при поддержке РФФИ, проект № 08-02-97008.

Список литературы

- [1] Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Физматгиз, 1959. С. 717–727.
- [2] Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003. Гл. 11. С. 335–350.

- [3] *Блехман И.И.* // Синхронизация динамических систем. М.: Наука, 1971. С. 120–131.
- [4] Блехман И.И. // Синхронизация в природе и технике. М.: Наука, 1981. С. 78–95.
- [5] *Малахов А.Н.* Флуктуации в автоколебательных системах. М.: Наука, 1968. Гл. 9. С. 343–427.
- [6] *Пикин С.А.* // Структурные превращения в жидких кристаллах. М.: Наука, 1981. С. 275.
- [7] Delev V.A., Scaldin O.A., Chuvyrov A.N. // Mol. Cryst. Liq. Cryst. 1992. V. 215. P. 179–186.
- [8] Delev V.A., Scaldin O.A., Chuvyrov A.N. // Liq. Cryst. 1992. V. 12. N 3. P. 441– 448.
- [9] Батыршин Э.С., Делев В.А., Скалдин О.А. // Кристаллография. 1999. Т. 44. С. 548–550.
- [10] Баскаков С.И. Радио-технические цепи и сигналы. М.: Высш. школа, 1988. 444 с.
- [11] Okuda K. // Physica D. 1993. V. 63. P. 424-436.