04 Электродинамическая модель микроволнового стримера

© В.А. Битюрин, П.В. Веденин

Объединенный институт высоких температур РАН, Москва E-mail: bityurin@ihed.ras.ru

В окончательной редакции 11 марта 2009 г.

Представлена основанная на аналитических соотношениях модель СВЧ-стримера, позволяющая описывать его эволюцию как при вытягивании вдоль внешнего электрического поля, так и после остановки. Проведено сравнение с численными 2D расчетами электростатического этапа в воздухе.

PACS: 52.80.Pi

Сложность реализации численными методами решения электродинамической задачи о распространении микроволнового стримера в свободном пространстве с привлечением достаточно полной системы плазмохимических реакций явилась причиной поисках упрощенных подходов. Описанная в [1] модель пригодна для исследования лишь начального этапа удлинения плазменного облака (плазмоида). В работах [2–3] предложены модели, позволяющие рассматривать различные режимы распространения микроволнового разряда навстречу источнику излучения в электрическом поле. В рамках же представленной в данном сообщении модели можно рассматривать характерные особенности эволюции плазмоида не только вплоть до полного прекращения вытягивания вдоль внешнего надпробойного электрического поля, но и на более поздних электродинамических этапах.

Стример, центр которого совмещен с началом системы координат, удлиняется вдоль внешнего электрического поля $\operatorname{Re}\{\mathbf{E}_0(\mathbf{r},t)\times\exp(-i\omega t)\}$, параллельно оси *z*. Нескомпенсированные высокочастотные объемные заряды расположены симметрично относительно плоскости *z* = 0 и локализованы преимущественно на фронтах бегущих в усиленном электрическом поле в двух взаимно противоположных направлениях волн ионизации (ВИ). Внутри соединяющего заряженные

74

75

головки плазменного канала электрическое поле, как показали численные расчеты [4,5], квазиоднородно.

Выражение для медленно изменяющейся во времени комплексной амплитуды электрического поля включает в себя зарядовую и токовую составляющие

$$\mathbf{E} = \mathbf{E}_0 + \mathbf{E}_Q^{(+)} + \mathbf{E}_Q^{(-)} + \mathbf{E}_1,$$
(1)

где

$$\begin{cases} \mathbf{E}_{Q}^{(+)} \\ \mathbf{E}_{1} \end{cases} \cong \frac{1}{4\pi\varepsilon_{0}} \left\{ \frac{-\nabla}{ik/c} \right\} \int dV' \begin{pmatrix} \rho^{(\pm)}(\mathbf{r}') \\ \mathbf{j}(\mathbf{r}') \end{pmatrix} G(R), \quad \mathbf{j} = \frac{\sigma}{1 - i\vartheta} \mathbf{E},$$

 ρ^{\pm} — амплитуда плотности избыточного заряда в объеме $V^{(\pm)}$ (знаки \pm относятся к областям $\binom{z>0}{z<0}$), $k = \frac{\omega}{c}$, c — скорость света, $G(R) = \frac{\exp(ikR)}{R}$, $R = |\mathbf{r} - \mathbf{r}'|$, $\sigma = \frac{e^2N_c}{m\nu}$ — средняя на периоде $T = 2\pi\omega^{-1}$ проводимость плазмы, $\vartheta = \frac{\omega}{\nu} < 1$, ν — транспортная частота столкновений электронов.

Применив теорему Гаусса, получаем приближенное выражение для амплитудного значения полного высокочастотного заряда в объеме V^{\pm}

$$Q^{(\pm)} \equiv \rho_{\max}^{(\pm)} \int dV f_Q^{(\pm)}(\mathbf{r}) \cong \pm \frac{i\sigma_c E_c \pi r_{ch}^2}{\omega(1-i\vartheta)},$$
(2)

где σ_{\max}^{\pm} — максимальные значения амплитуды плотности заряда, $f_Q^{\pm} = \frac{\rho^{\pm}}{\rho_{\max}^{\pm}}, r_{ch}$ — эффективный радиус плазменного канала $(kr_{ch} \ll 1)$ в плоскости z = 0,

$$r_{ch}^{2} = \frac{1}{\pi} \iint dx dy f_{e}(x, y, 0),$$
(3)

а $f_e(\mathbf{r}) = N_e(\mathbf{r})/N_{ec}$. Все величины с индексом "*c*" относятся к точке $\mathbf{r}_c = (0, 0, 0)$.

После простых преобразований, учитывающих соотношение (2) и слабую неоднородность амплитуды продольного поля внутри тонкого плазменного канала, выражения для зарядовой и токовой *z*-составляющих поля принимают вид:

$$\begin{cases} E_{Q_z}^{(\pm)} \\ E_{1z} \end{cases} \cong \frac{iE_c\Lambda}{1-i\vartheta} \begin{cases} \mp \Psi_{Q_z}^{(\pm)} \\ \Psi_{1z} \end{cases}, \quad E_c = \frac{E_{0c}}{1+\frac{i\Lambda(2\Psi_{Q_c}-\Psi_{1c})}{1-i\vartheta}}, \tag{4}$$

76

$$\begin{split} \Psi_{Qz}^{(\pm)} &= k^{-2} \frac{\partial}{\partial z} \frac{\int dV' f_Q^{(\pm)}(\mathbf{r}') G(R)}{\int dV f_Q^{(\pm)}(\mathbf{r})}, \quad \Psi_{1z} = \frac{1}{\pi r_{ch}^2} \int dV' f_e(\mathbf{r}') G(R), \\ \Lambda &= \frac{\sigma_* (kr_{ch})^2}{4}, \, \sigma_* = \frac{\sigma_c}{\omega \varepsilon_0}. \end{split}$$

В данной работе рассмотрена простейшая конфигурация стримера: разноименно заряженные головки с центрами зарядов в точках $(0, 0, \pm l_Q)$ соединены находящимся в поле $E_z = E_c$ однородно заполненным плазмой $N_e = N_{ec}$ цилиндром с длиной $2l_{ch}$ и радиусом r_{ch} . Максимальный линейный размер головки значительно меньше масштаба l_Q . В рамках такой модели выражения для форм-факторов Ψ_{Qc} ($\Psi_{Qc} = \Psi_{Qz}^{(+)}(\mathbf{r} = 0)$) и Ψ_{1c} упрощаются:

$$\Psi_{Qc} \cong \frac{(1 - ikl_Q)}{(kl_Q)} \exp(ikl_Q) \Psi_{1c}$$
$$= -i \left(\frac{2}{kr_{ch}}\right)^2 \int_0^{kl_{ch}} d\eta \left(\exp\left(i\sqrt{(kr_{ch})^2 + \eta^2}\right) - \exp(i\eta)\right).$$
(5)

Под длиной стримера будем подразумевать расстояние $2l_{st}(t)$ между точками, в которых амплитуда электрического поля максимальна $(|E_h| = |E_z(0, 0, \pm l_{st})|)$. Введя в рассмотрение эффективную головку, внутри которой сосредоточен полный заряд $Q^{(\pm)}$ $(f_Q^{(\pm)} = 1)$, можно оценить величину поля $E_{Qh}^{(\pm)}$ (см. (4)). Так, например, для случаев головка-сфера (радиус r_s) и головка-диск (радиус r_d , толщина Δ) имеем

$$E_{Qh}^{(\pm)} = \frac{Q^{(\pm)}}{4\pi\varepsilon_0} \begin{cases} r_s^{-2}, & c\phiepa, \\ 2r_d^{-2} \left(1 + \xi - \sqrt{1 + \xi^2}\right), & диск, \end{cases}$$
(6)

где $\xi = r_d / \Delta$. С учетом вышесказанного выражение для максимальной амплитуды полного электрического поля принимает следующий вид:

$$E_{h}^{(\pm)} \cong \left| E_{0} + \frac{1}{4\pi\varepsilon_{0}} \left(p_{Q} \frac{Q^{(\pm)}}{r_{h}^{2}} + \frac{Q^{(\mp)}(1 - 2ikl_{Q})}{4l_{Q}^{2}} \exp(2ikl_{Q}) \right) + \frac{iE_{c}\Lambda}{1 - i\vartheta} \Psi_{1h} \right|,$$

$$(7)$$

где r_h — характерный поперечный размер гловки, p_Q — форм-фактор.

Удлинение стримера происходит в результате ионизации в усиленном в области головок поле. Из уравнения электронного баланса в бездиффузионном приближении (высокое давление) следует, что волна ионизации распространяется со скоростью

$$i_{st} \cong p_V \gamma_h(|E_h|) l_{st},\tag{8}$$

где $p_V = \frac{\Delta/l_{st}}{\ln(N_{e1}/N_{e0})}$, $\gamma = \nu_i - \nu_a$, ν_i , ν_a — частоты прямой ионизации и прилипания, $N_{e1,0}$ — концентрация электронов соответственно за и перед фронтом ВИ, Δ — ширина фронта.

Совместный анализ результатов численных 2D расчетов электростатического этапа эволюции СВЧ-стримера в воздухе [5] и выражений для амплитуды $|E_c|$ и $|E_h|$ показал следующее: а) наблюдавшееся в расчетах состояние $|E_c|$, $|E_h|$, r_h/l_{st} , $p_V \cong \text{const}$, $(p_V \sim 10^{-2})$ в рамках нашей модели может быть воспроизведено лишь в условиях

$$\sigma_* r_{ch}^2 / l_{st}^2, (l_Q, l_{ch}, \Delta) / l_{st}, p_Q (l_{st} / r_h)^2 \cong \text{const},$$
(9)

б) нарастающий вследствие процессов объемной фотоионизации эффективный радиус канала связан с масштабом l_{st} соотношением

$$r_{ch} \cong r_0 \left(\frac{l_{st}}{r_0}\right)^{\mu},\tag{10}$$

где r_0 — начальный радиус плазменного облака, а $\mu = 0.35 \div 0.5$.

Замыкает модель система уравнений плазмохимической кинетики, из которой определяется концентрация $N_{ec}(|E_c(t)|)$ в канале.

Ввиду отсутствия информации о динамике используемых нами параметров по завершении электростатического этапа предполагается неизменность величин μ , p_V , l_Q , l_{ch}/l_{st} , $p_Q(l_{st}/r_h)^2$ в продолжение всего расчета. Параметр μ выражается через определяемые из фотографий итоговые размеры $l_{st}^{(max)}$ и $r_{ch}^{(max)}$, а величина форм-фактора $p_Q(l_{st}/r_h)^2$ устанавливается такой, чтобы обеспечить вытягивание на длину $2l_{st}^{(max)}$.

Рис. 1 демонстрирует следующее: а) основанная на интегральных соотношениях модель адекватно описывает эволюцию концентрации электронов на электростатическом этапе; б) вклад этого этапа в итоговое значение $N_{ec}(l_{st}^{(\max)})$ мал; в) величина $N_{ec}(l_{st}^{(\max)})$ слабо зависит от скорости удлинения стримера (8).

Рис. 1. Зависимость концентрации N_{ec} от полудлины стримера l_{st} в воздухе для условий расчета: $P_0 = 5 \cdot 10^4$ Ра, длина волны $\lambda = 9$ сm; $E_0 = 60$ kV/cm; $r_0 = 0.02$ сm; $l_Q = 0.9 l_{st}$; $l_{ch} = l_Q$; $p_V = 5 \cdot 10^{-3}$ (1), 10^{-2} (2), $3 \cdot 10^{-2}$ (3); $\mu = 0.35$. Точки — результаты 2D численных расчетов [3].

Рис. 2 отражает характерную картину эволюции амплитуды поля и проводимости при различных значениях параметров l_Q/l_{st} и l_{ch}/l_{st} . Вытягивание плазмоида вдоль внешнего электрического поля начинается при выполнении условия $\sigma_* > 1$. Резкое падение амплитуды $|E_c|$ вызвано нарастанием объемного заряда, а последующая стабилизация связана с замедлением процессов образования электронов и удалением головок стримера от центра. Электростатический этап оканчивается, когда становится заметным влияние вихревого электрического поля, компенсирующего поле заряда головок. По прохождении резонанса (в резонансе $l_{st} = l_{st}^{(res)}$ достигается максимум амплитуды) уменьшение функций $|E_c(t)|$, $|Q^{(\pm)}(t)|$, $|E_h^{\pm}(t)|$ и $i_{st}(t)$ продолжается, пока рождение электронов в процессах прямой и ассоциативной ионизации преобладает над рекомбинацией. После прекращения вытягивания начинается заключительный этап эволюции плазмоида в условиях Λ , $|E_c| \cong$ const. Слабая зависимость амплитуды на заключительном этапе от параметров l_Q/l_{st} и l_{ch}/l_{st} объясняется тем, что вихревая составляющая поля

Рис. 2. Зависимости $|E_c/E_0|$ (*a*) и σ_* (*b*) от времени для условий расчета: $P_0 = 5 \cdot 10^4$ Ра, $\lambda = 9$ сm; $E_0 = 60$ kV/cm; $r_0 = 0.02$ сm; $2l_{st} = 0.4\lambda$; $\mu = 0.35$; $p_V = 10^{-2}$; $l_{ch} = l_Q$, $l_Q = (0.7, 0.9)l_{st}(1, 2)$; $l_{ch} = 0.9l_{st}$, $l_Q = 0.7l_{st}$ (3); $l_{ch} = 0.7l_{st}$, $l_Q = 0.91l_{st}$ (4).

преобладает над зарядовой ($|\Psi_{1c}| > 2\Psi_{Qc}|$), а в величину форм-фактора Ψ_{1c} основной вклад вносит область интегрирования в окрестности нуля. Резонансная длина стримера $l_{st}^{(res)}$ обратно пропорциональна параметру l_Q/l_{st} , поэтому с возрастанием величины последнего время достижения резонанса сокращается.

Суммируя вышеизложенное, подчеркнем, что в рамках представленной модели оказалось возможным воспроизвести все наблюдавшиеся в 2D расчетах закономерности поведения характеристик СВЧ стримера на электростатическом этапе, а также проследить особенности эволюции в окрестности резонанса. Продемонстрирована слабая зависимость итоговых характеристик канала от параметров модели.

Работа выполнена в рамках программы президиума РАН П-09.

Список литературы

- [1] Веденин П.В., Попов Н.А. // ЖЭТФ. 1995. Т. 108. С. 531–547.
- [2] Веденин П.В., Попов Н.А. // ЖЭТФ. 2003. Т. 123. В. 1. С. 49-63.
- [3] Александров К.В., Грачев Л.П., Есаков И.И., Федоров В.В., Ходатаев К.В. // ЖТФ. 2006. Т. 76. В. 11. С. 52–60.
- [4] Веденин П.В., Розанов Н.Е. // ЖЭТФ. 1994. Т. 105. С. 868-880.
- [5] Найдис Г.В. // ЖЭТФ. 1996. Т. 109. С. 1288–1296.