01;05 О взаимосвязи векторов Бюргерса дислокаций и картин локализации пластической деформации при сжатии щелочно-галоидных кристаллов

© С.А. Баранникова, М.В. Надежкин, Л.Б. Зуев

Институт физики прочности и материаловедения СО РАН, Томск E-mail: bsa@ispms.tsc.ru

Поступило в Редакцию 17 марта 2011 г.

Исследованы картины локализации пластического течения в щелочно-галоидных кристаллах NaCl, KCl и LiF при сжатии методом двухэкспозиционной спекл-фотографии. Определены основные параметры автоволн локализации деформации на линейных стадиях деформационного упрочнения в щелочногалоидных кристаллах. Установлена количественная связь макроскопических параметров локализации пластического течения и микроскопических параметров кристаллической решетки деформируемых твердых тел.

В наших работах [1–3] приведены экспериментальные доказательства локализованного характера развития пластической деформации твердых тел на всем протяжении процесса. Этот эффект ярко проявляется в монокристаллах, где отчетливо фиксируются макрокартины локализации, отвечающие известным стадиям процесса деформирования: легкому скольжению, линейному и параболическому деформационному упрочнению [1]. При этом наблюдаемые макрокартины локализации однозначно связаны [2,3] с законом деформационного упрочнения, действующим на соответствующей стадии процесса деформации монокристалла [4].

В данной работе исследована эволюция картин макроскопической локализации пластического течения при сжатии щелочно-галлоидных кристаллов (ЩГК), на которых традиционно изучаются механизмы пластического течения в физике пластичности [4]. Исследование локализации пластического течения в ЩГК привлекает интерес, прежде всего, наличием нескольких последовательно реализующихся стадий линейного деформационного упрочнения в них [5,6]. Это позволяет

15

ожидать появления при деформации фазовых автоволн локализованного пластического течения [7], характеризуемых длиной λ и скоростью распространения в материале V_{aw} [1]. Кроме того, в работе [1] было установлено существование инвариантного для упругой и пластической деформаций металлов произведения характерных для каждого процесса линейного масштаба и скорости. Важно проверить существование такого инварианта в ЩГК. Поэтому целью настоящей работы является сравнение величин λ и V_{aw} для разных линейных стадий деформационного упрочнения в ЩГК и проверка существования инварианта.

Экспериментально картины локализации пластического течения наблюдались в наших исследованиях при использовании разработанной для этих целей методики двухэкспозиционной спекл-фотографии [1]. Она позволяет определять поле векторов смещения $\mathbf{r}(x, y)$ в деформируемом образце и рассчитывать продольные ε_{xx} , поперечные ε_{yy} , сдвиговые ε_{xy} и поворотные ω_z компоненты тензора пластической дисторсии $\beta_{ij} = \nabla \mathbf{r}(x, y)$. Очень заманчивой является возможность одновременного использования для исследований деформационных процессов в ЩГК метода фотоупругости [8]. При сжатии вдоль направления [001] в кристаллах NaCl, KCl и LiF действуют четыре равнонагруженные системы скольжения $\{110\}\langle 1\overline{10}\rangle$, а пластическая деформация в таких условиях может достигать десятков процентов [4]. Как и в [5,6], в настоящей работе использованы выращенные методом Киропулоса монокристаллы NaCl, KCl и LiF, механические характеристики которых приведены в таблице 1.

Анализ формы кривых пластического течения и распределений макронапряжений в кристалле в ходе деформации не обнаружил существенных отличий от полученных для NaCl, KCl и LiF данных [9], и эти сведения приведены в работе как доказательства точности экспериментальной методики. Сравнение результатов исследований при сжатии KCl, NaCl, LiF, полученных методами двухэкспозиционной спекл-фотографии и фотоупругости, показало, что зоны локализации пластической деформации представляют собой совокупность сдвигов по плоскостям скольжения кристаллов [5,6]. Согласно полученным данным, при сжатии ЩГК пластическое течение локализовано в эквидистантно расположенных по длине образца активных зонах, а в зонах между такими очагами деформация практически не развивается. Зоны активной деформации на стадиях I и II движутся вдоль оси

Кристалл	Предел текучести при сжатии	Деформация при разрушении	Интервалы деформации существования стадий деформационного	Коэффициент де- формационного упрочнения <i>θ</i> , MPa	
	σ_y , MPA	\mathcal{E}_{f}	упрочнения		
NaCl	0.5-2.0	0.1	0.002 - 0.02	120	
			(линейная стадия I) до 0.055 (линейная сталия II)	490	
			до 0.09 (линейная стадия III)	300	
KCl	1.0-5.0	0.22	0.002—0.01 (линейная сталия I)	137	
			0.05-0.085 (линейная стадия II)	178	
LiF	6.5-7.5	0.1-0.15	0.002—0.008 (линейная сталия I)	115	
			до 0.026	285	
			(линейная стадия II) до 0.04 (линейная сталия III)	365	
			(Junionium Olugini III)		

Таблица 1. Деформационные характеристики исследованных кристаллов

образца. Эту особенность впервые удалось наблюдать в ЩГК, хотя для металлических монокристаллов и поликристаллов ряда чистых металлов и сплавов она уже подробно изучена [1]. Имеется принципиальное отличие в поведении движущихся зон локализации деформации в ЩГК при сжатии на линейной стадии II и в металлических кристаллах на стадии линейного деформационного упрочнения II. В металлах эквидистантно расположенные очаги деформации многкратно проходят по образцу, образуя фазовую автоволну [1]. В ЩГК, как оказалось, возможно только однократное прохождение очага по образцу.

Анализ распределений локальных деформаций ε_{xx} при сжатии образцов NaCl, KCl и LiF показал, что на линейных стадиях II в ЩГК, так же как и в металлических монокристаллах [1], возникают подвижные системы очагов пластического течения. В кристаллах NaCl удалось наблю-

Рис. 1. Обобщенная зависимость скорости волн локализации пластической деформации V_{aw} от приведенного коэффициента деформационного упрочнения G/θ на стадии легкого скольжения (прямая 1) и стадии линейного упрочнения (прямая 2): о — данные для ГЦК-, ОЦК- и ГПУ-монокристаллов металлов; — данные для ГЦК-, ОЦК- и ГПУ-моно- и поликристаллов металлов [1]; — данные для ЩГК.

дать четыре зоны локализации деформации, движущиеся со скоростью $\sim 7.7 \cdot 10^{-5}$ m/s; в KCl таких зон было две и они двигались со скоростью $\sim 6.0 \cdot 10^{-5}$ m/s; и наконец, в LiF две наблюдавшиеся зоны перемещались со скоростью $\sim 8.5 \cdot 10^{-5}$ m/s [5,6]. Ранее для всех исследованных металлических материалов было обнаружено, что скорость движения деформационных очагов V_{aw} на стадии линейного деформационного упрочнения, когда $\sigma \sim \varepsilon$ (τ — напряжение течения, ε — деформация), обратно пропорциональна коэффициенту деформационного упрочнения на этой стадии, т.е. $V_{aw}(\theta) = V_0 + \Xi/\theta$ [1]. Полученные в настоящей работе данные о скоростях очагов пластического течения в NaCl, KCl и LiF (рис. 1) удовлетворяют этой же зависимости с коэффициентом

Монокристаллы	$\lambda V_{aw} \cdot 10^7, \ { m m}^2/{ m s}$	$V_{\perp} \cdot 10^{-3},$ m/s	$\hat{d} = \frac{\lambda V_{aw}}{V_{\perp}} \cdot 10^{10},$ m	$\frac{d \cdot 10^{10}}{\mathrm{m}},$	$b \cdot 10^{10},$ m
KCl	3.0	2.224	1.349	3.13	4.44
NaCl	3.08	2.656	1.159	2.821	3.97
LiF	4.25	4.406	0.965	2.0	2.85
Ni	2.10	3.22	0.65	2.03	2.49
α -Fe	2.24	3.32	0.67	2.07	2.48
γ-Fe	2.55	3.32	0.76	2.07	2.02

Таблица 2. Параметры локализации пластической деформации и кристаллической решетки на стадии линейного деформационного упрочнения

корреляции ~ 0.9 , значение которого может быть признано весьма значимым [10]. Полученный результат подтверждает единую природу волновых процессов, характерных для линейных стадий упрочнения как металлических, так и щелочно-галоидных кристаллов.

Для ЩГК, так же как и для ранее исследованных металлов [1], удалось установить справедливость соотношения

$$\hat{d} = \frac{\lambda V_{aw}}{V_{\perp}} = kd, \tag{1}$$

где $k \approx 1/2$, d — расстояние между плотноупакованными плоскостями {111} в соответствующих кристаллах, а V_{\perp} — скорость упругих поперечных волн в них. Величины d и V_{\perp} , необходимые для проверки соотношения (1), взяты из работ [11] и [12]. Коэффициент корреляции переменных в (1) оказался равным 0.99. Выполнение соотношения (1) доказывается данными табл. 2.

Смысл соотношения (1) состоит в том, что оно количественно связывает характеристики упругих волн в кристаллах (d и V_{\perp}) с характеристиками автоволн локализации пластического течения (λ и V_{aw}) в них. Произведения $\hat{d}V_{\perp}$ и λV_{aw} могут рассматривать в качестве инвариантов упругих и пластических деформационных процессов в твердом теле, которые установлены для случаев деформации ГЦК-, ОЦК-, ГПУ-металлов [1] и ЩГК.

Рис. 2. Корреляционная зависимость характерного параметра \hat{d} и вектора Бюргерса *b*.

Поскольку величины *d* связаны с длинами вектора Бюргерса *b* [13], то соотношение (1) можно представить в следующем виде (рис. 2):

$$\hat{d} = \frac{1}{3}b.$$
 (2)

Коэффициент корреляции переменных в зависимости (2) равен 0.99.

В таком случае соотношение (1), очевидно, эквивалентно равенству

$$\lambda V_{aw} \approx \frac{1}{3} \, b V_{\perp}.\tag{3}$$

Ясно, что соотношения (2) и (3) указывают на количественную связь хаарктеристик разного масшатба. Можно полагать, что волны локализации пластического течения с их макроскопическим линейным масштабом $\sim \lambda$ возникают как результат взаимодействия дислокаций, имеющих типично микроскопический масштаб $\sim b \ll \lambda$. Это обстоятельство косвенно подтверждает идею о кооперативном характере процесса пластической деформации [14], когда носителями пластичности являются уже не отдельные линейные дефекты, а их ансамбли разной степени сложности.

В рамках представлений о многоуровневой природе пластической деформации [1,15] очень важен вопрос о форме и природе связи макроскопической локализации пластической деформации и дислокационных

характеристик деформируемой среды. Изложенные выше соображения могут быть использованы для объяснения некоторых наблюдаемых при исследовании локализации пластической деформации явлений.

Работа поддержана проектом № 21 программы фундаментальных исследований № 11 президиума РАН.

Список литературы

- [1] Зуев Л.Б., Данилов В.И., Баранникова С.А. Физика макролокализации пластического течения. Новосибирск: Наука, 2008. 327 с.
- [2] Zuev L.B. // Ann. Phys. 2001. V. 10. N 11-12. P. 965-984.
- [3] Zuev L.B. // Ann. Phys. 2007. V. 16. N 4. P. 286-310.
- [4] Смирнов Б.И. Дислокационная структура и упрочнение кристаллов. М.: Наука, 1981. 236 с.
- [5] Баранникова С.А., Надежкин М.В., Зуев Л.Б. // ФТТ. 2009. Т. 51. В. 6. С. 1081–1086.
- [6] Баранникова С.А., Надежкин М.В., Зуев Л.Б. // ФТТ. 2010. Т. 52. В. 7. С. 1291–1294.
- [7] Земсков В.П., Лоскутов А.Ю. // ЖЭТФ. 2008. Т. 134. № 2(8). С. 406-412.
- [8] Меланхолин Н.М. Методы исследования оптических свойств кристаллов. М.: Наука, 1970. 156 с.
- [9] Бенгус В.З., Комник С.Н., Левченко В.А. Физика конденсированного состояния. В. 5. Харьков: ФТИН АН УССР, 1969. С. 152–167.
- [10] *Митропольский А.К.* Техника статистических вычислений. М.: ГИФМЛ, 1961. 480 с.
- [11] *Миркин Л.И.* Справочник по рентгеноструктурному анализу поликристаллов. М: ГИФМЛ, 1961. С. 863 с.
- [12] Андерсон О. // Физическая акустика. Т. III. Ч. Б. Динамика решетки. М.: Мир, 1968. С. 62–121.
- [13] Шаскольская М.П. Кристаллография. М.: Высш. школа, 1976. 391 с.
- [14] Малыгин Г.А. // УФН. 1999. Т. 169. В. 9. С. 979–1010.
- [15] Зуев Л.Б., Баранникова С.А., Данилов В.И. // Кристаллография. 2009. Т. 54. № 6. С. 1063–1073.