06 Моделирование электрических характеристик туннельных структур металл-диэлектрик-полупроводник сферической формы

© М.И. Векслер, И.В. Грехов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: shulekin@mail.ioffe.ru

Поступило в Редакцию 1июня 2011 г.

Теоретически рассмотрены распределение потенциала и вольт-амперные характеристики туннельной структуры металл-диэлектрик-полупроводник в сферической геометрии. Показано, что из-за эффекта геометрии распределение напряжения, а значит, и туннельные токи претерпевают значительные изменения по сравнению с планарным случаем. Во многих деталях сферическая структура ведет себя как планарная, выполненная на более сильно легированной подложке.

К настоящему времени опубликовано огромное количество работ, посвященных изучению поведения планарных структур металл-диэлектрик-полупроводник (МДП) с туннельно-тонким диэлектриком, например [1–3]. Однако информации о поведении аналогичных систем в другой геометрической конфигурации пока крайне мало [4] (см. также обзор [5], представляющий квантово-механический аспект исходной проблемы).

Цель данной работы состоит в том, чтобы теоретически проанализировать изменения, происходящие при переходе к сферической геометрии в туннельной МДП-структуре. Рассматривается система (врезка рис. 1), состоящая из металлического шара, окруженного тонким слоем диэлектрика толщиной d с внешним радиусом $R_0 \gg d$ и далее однородным полупроводником. Считается, что между шаромзатвором и толщей приложено напряжение V. При обратном смещении ("-" на *p*-Si или "+" на *n*-Si) в полупроводнике создается обедненная область шириной w. Интерес представляет анализ тенденций во всем диапазоне изменения кривизны от долей ст до десятков пт.

33

3

Рис. 1. Рассчитанные значения поверхностного потенциала и напряжения на диэлектрике в структуре Al/SiO₂/*p*-Si в зависимости от радиуса интерфейса R_0 (обратное смещение). Концентрация акцепторов N_A , cm⁻³: $I - 10^{14}$, $2 - 10^{16}$, $3 - 10^{17}$, $4 - 10^{18}$. На врезке: конфигурация структуры и зонная диаграмма с обозначениями.

Данная постановка задачи лишь на первый взгляд может показаться оторванной от реальности. Достаточно сказать, что современные полевые транзисторы с туннельным подзатворным диэлектриком и элементы памяти имеют соизмеримые с вертикальными горизонтальные размеры (< 100 nm) [3]; это обстоятельство ограничивает применение чисто планарных моделей. Кроме того, контакт сканирующего туннельного микроскопа (СТМ) с поверхностью полупроводника иногда рассматривается как аналог туннельного МДП-диода [6] специфической формы. Наконец, можно представить себе проводящий островок внутри полупроводника, на границе которого формируется пленка. Разумеется, в каждом из упомянутых случаев приходится иметь дело с достаточно

сложной геометрией. Однако ее точный учет нередко обесценивает неполнота информации — так, в случае СТМ часто неизвестны форма иглы и роль дефектов. Сферическая же модель, будучи, конечно, приближенной, позволяет, тем не менее, анализировать общие закономерности поведения соответствующих систем и значительно выигрывает в наглядности.

Мы кратко укажем особенности модели, продемонстрируем ее возможности и обсудим примеры наиболее важных результатов.

При разработке теории сферической МДП-структуры использовались подходы, в свое время опробованные для планарных структур. Квантование состояний носителей вблизи поверхности диэлектрика учитывалось только в полупроводнике; считалось, что радиус шара R_0-d не слишком мал и что в металле из-за перекрытия зон любая энергия электрона, в принципе, может быть реализована.

Наибольший интерес представляет режим обратного смещения. Для основного состояния частиц в квантовой яме в полупроводнике использовалась волновая функция

$$\psi = A(r - R_0) \exp\left(-\frac{b(r - R_0)}{2}\right),\tag{1}$$

аналогичная планарному случаю (там было бы z вместо $r-R_0$ [7]) и нормированная в области $r > R_0$. С помощью этой функции определялись средняя радиальная кинетическая энергия частиц, а также энергии их взаимодействия с зарядом обедненной области и между собой: $\langle W_s \rangle = 4\pi \int W_s |\psi|^2 r^2 dr$, где W_s — конкретная составляющая энергии. Далее из вариационного принципа находился параметр b, а затем энергия уровня E_0 . "Поперечные" энергии движения носителей вдоль сферического интерфейса оценивались как поправки теории возмущений с функцией ψ и слагаемым $\hbar^2 l(l+1)/(2mr^2)$ (l=0, 1, 2, ...), добавляемым к потенциальной энергии при разделении переменных в уравнении Шредингера. С учетом 2(2l+1)-кратного вырождения находились число состояний с поперечной энергией меньше заданной и — путем дифференцирования — плотность состояний $\rho_{2D} \approx 4\pi m(12 + 6R_0b + R_0^2b^2)/(hR_0b)^2$, где m — эффективная масса, полагаемая изотропной $(0.5m_0)$.

Распределение напряжения в структуре претерпевает изменения, связанные с ее геометрической формой. В частности, поверхностный

потенциал задается выражением

$$\varphi_s = \frac{qN_{dop}w^2}{2\varepsilon_0\varepsilon_s} \left(1 + \frac{2w}{3R_0}\right) + \frac{qN_s}{\varepsilon_0\varepsilon_s} \frac{3R_0(4+R_0b)}{12+6R_0b+R_0^2b^2}.$$
 (2)

Здесь N_s [cm⁻²] — концентрация подвижных носителей на единицу площади внешнего ($r = R_0$) диэлектрического интерфейса, N_{dop} [cm⁻³] концентрация легирующей примеси N_D или N_A , а ε_s — проницаемость полупроводника. При заданных напряжении V и (для обедненияинверсии, вставка в рис. 1) разности $E_{Fb} - E_{Fw}$ между уровнями Ферми толщи и квантовой ямы выполнялась двойная итерация для определения напряжения на изоляторе U и N_s ; знание этих величин позволяет получить и все необходимые остальные параметры.

Вычисление электронного (j_e) и дырочного (j_h) туннельных токов через диэлектрик производилось по стандартным формулам, учитывающим квантование для одной из компонент в зависимости от полярности [8]. При этом принимались во внимание неоднородность (спад ~ r^{-2}) электрического поля внутри барьера в сферической системе и изменения квазиклассического времени τ_0 между соударениями частицы со стенками ямы, также вызванные геометрическим фактором. При определенных условиях существенным становилось межзонное туннелирование в полупроводнике (рис. 1, вставка).

Расчеты выполнялись для системы Al/SiO₂/Si при t = 300 K. Эффективная масса в SiO₂ для электронов была положена равной $0.42m_0$, а для дырок $0.33m_0$ [8]; масса носителя при туннелировании зона-зона (j_{bb}) в кремнии $0.2m_0$.

Как было установлено, на качественном уровне поведение сферической МДП-структуры подобно планарной. Напряжение распределяется между слоем диэлектрика и подложкой, протекают обычные по величине (для конкретной толщины окисла d) токи инжекции из металла, при обратной полярности напряжение U зависит как от V, так и от наличия неосновных носителей. Но имеются принципиальные количественные различия.

На рис. 1 приведены значения напряжения на диэлектрике и поверхностного потенциала в МДП-структуре в режиме обеднения. Для моделирования такого режима уровень Ферми инверсного слоя E_{Fw} был положен равным уровню Ферми металла E_{Fm} . При больших радиусах R_0 значительная часть смещения падает в подложке. Но при

Изменения распределения напряжения сказываются на плотностях токов j_{bb} , j_e и j_h .

Рассматривая профили зон (рис. 2, врезка), констатируем увеличение наклона, т. е. поля в Si, у границы при уменьшении R_0 . Вследствие этого, как показывает расчет, уже при $R_0 \sim 0.05 \,\mu\text{m}$ ток j_{bb} может достигнуть заметных значений даже при умеренном ($\sim 10^{16} \,\text{cm}^{-3}$) легировании (рис. 2), при котором данный вид транспорта в планарном случае совершенно несуществен. Вычисление j_{bb} базировалось на подходе из работы [9]; при этом был сделан переход к аргументу "энергия" $(j_{bb} = \int \xi(E)dE, \xi \sim F_t(E) \exp[-\text{const}/F_t(E)])$ и подставлялось среднее поле $F_t = E_{g(Si)}/(qL_t(E))$ на длине туннелирования L_t . Но при совсем малых радиусах $R_0 < 20 \,\text{nm}$ ток j_{bb} спадает из-за уменьшения F_1 (несмотря на рост поля на интерфейсе) и ширины $q\varphi_s - E_{g(Si)} - E_0$ энергетического диапазона межзонного транспорта.

Применительно к переносу через окисел вычисления, выполненные для заданного соположения уровней Ферми E_{Fb} и E_{Fw} , дают рост инжекционной компоненты тока (j^{inj}) и спад тока утечки (j^{leak}) из инверсного или обогащенного слоя (рис. 3). Такое происходит из-за искажения профиля зон диэлектрического барьера (количественно оно может быть равносильно изменению высоты последнего до ± 0.03 eV), а при обратном смещении еще и из-за повышения роли заряда обедненной области, что снижает величину N_s концентрации носителей в яме. Эта тенденция типична для структур на основе кремния как *n*-, так и *p*-типа, причем при обеих полярностях приложенного напряжения V, но, поскольку обычно $j_e \gg j_h$, более интересно рассмотреть случай *n*-подложки, где при обратном смещении $j^{inj} = j_e$, а $j^{leak} = j_h$ (рис. 3, врезка). В таких условиях МДП-структура, по сути, работает как транзистор с туннельным эмиттером [2]; при этом рост j_e в сочетании со спадом j_h (рис. 3) при уменьшении R_0 означает рост отношения

Рис. 2. Рассчитанные значения тока межзонного туннелирования в кремнии в структуре Al/SiO₂/*p*-Si сферической геометрии. Концентрация акцепторов N_A , сm⁻³: $I = 10^{15}$, $2 = 10^{16}$, $3 = 10^{17}$. На врезке: изменение профиля E_c зоны проводимости в зависимости от R_0 . Кроме одной кривой, расчет выполнен для режима обеднения.

 $j^{inj}/j^{leak} = j_e/j_h$ и, следовательно, усиления. Отметим, что данные изменения ожидаются далеко не "в квантовом пределе" — уже при $R_0 \sim 10^{-4}$ ст (не очень четко видно на log-шкале) и тем более при $R_0 < 10^{-5}$ ст. Параметр *b*, слегка возрастая при уменьшении R_0 , здесь составляет $(1-2) \cdot 10^7$ ст⁻¹ $(b^{-1} \ll R_0)$.

Благодаря тому, что электроны инжектируются в кремний горячими, происходит ударная ионизация атомов Si, служащая внутренним источником неосновных носителей (дырок). Этот эффект обусловливает бистабильность [2,8]. При переходе к сферической геометрии переклю-

39

Рис. 3. Рассчитанные значения электронного и дырочного туннельных токов через окисел в структуре Al/SiO₂/*n*-Si сферической геометрии (обратное смещение). Концентрация доноров N_D , ст⁻³: $I - 10^{16}$, $2 - 10^{18}$. На врезке: вольт-амперные кривые при различных радиусах R_0 и зонная диаграмма с обозначениями.

чение прибора облегчается, как продемонстрировано на врезке к рис. 3. Если в планарном варианте напряжение включения составляет десятки вольт и выходит за диапазон рисунка, то при $R_0 \sim 10^{-4}$ сm и менее *S*-образный сегмент резко сужается вплоть до полного исчезновения. Такое поведение как раз объясняется ростом отношения j_e/j_h , эквивалентным росту коэффициента инжекции МДП-эмиттера. Дополнительными факторами, ускоряющими переключение при малых радиусах R_0 , могут выступить повышение энергии инжекции и напраженности поля около интерфейса, влияющие на квантовый выход ионизации, а также (при достаточно большой разнице V-U) тока j_{bb} .

Систематических экспериментальных подтверждений предложенной модели пока нет. Но есть два весьма важных свидетельства в пользу

влияния геометрии на поведение системы, согласующиеся с результатами моделирования и обнаруженные в различных ситуациях контакта СТМ с пассивированной поверхностью кремния. Во-первых, в работе [6] для умеренно легированных подложек *n*-Si наблюдалось переключение при обратных напряжениях значительно ниже тех, которые следовало ожидать в планарном варианте для заданной концентрации доноров N_D . Во-вторых, при обратном смещении контакта с подложками *p*-Si ($N_A \sim 10^{16}$ cm⁻³) наблюдалась люминесценция, вызываемая электронами, попадающими в зону проводимости кремния путем туннелирования зона-зона [10]; ничего подобного в планарном случае не отмечалось ввиду ничтожности тока j_{bb} .

Эти факты косвенно подкрепляют теоретический результат, а именно предсказание того, что сферическая туннельная МДП-структура должна вести себя как планарная структура с более сильным легированием подложки и с более высоким коэффициентом инжекции носителей из металла. В целом же новая модель позволяет проводить расчет любых деталей поведения структур данного типа с заданным радиусом интерфейса R_0 .

Список литературы

- Roy K., Mukhopadhyay S., Mahmood-Meimand H. // Proc. IEEE. 2003. V. 91. N 2. P. 305–327.
- [2] Aderstedt E., Medugorac I., Lundgren P. // Solid-State Electron. 2002. V. 46. N 4. P. 497–500.
- [3] Balestra F. (ed.). Nanoscale CMOS: Innovative Materials, Modeling and Characterization. Chapt. 7. Wiley-ISTE, 2010. 544 p.
- [4] Feenstra R.M. // J. Vac. Sci. Technol. B. 2003. V. 21. N 5. P. 2080-2088.
- [5] Андрюшин Е.А., Быков А.А. // УФН. 1988. Т. 154. В. 1. С. 123–132.
- [6] Болотов Л.Н., Макаренко И.В., Титков А.Н., Векслер М.И., Грехов И.В., Шулекин А.Ф. // ФТТ. 1996. Т. 38. В. 3. С. 889–900.
- [7] Андо Т., Фаулер А., Стерн Ф. Электронные свойства двумерных систем. М.: Мир, 1985. 416 с.
- [8] Vexler M.I., Tyaginov S.E., Shulekin A.F. // J. Phys.: Condens. Matter. 2005.
 V. 17. N 50. P. 8057–8068.
- [9] Hurkx G.A.M., Klaassen D.B.M., Knuvers M.P.G. // IEEE Trans. Electron Dev. 1992. V. 39. N 2. P. 331–338.
- [10] Schmidt P., Berndt R., Vexler M.I. // Phys. Rev. Lett. 2007. V. 99. P. 246103.