Фазовые переходы в оксифториде $(NH_4)_2NbOF_5$

© В.Д. Фокина^{*,**}, Е.В. Богданов^{*}, М.В. Горев^{*,**}, М.С. Молокеев^{*}, Е.И. Погорельцев^{**}, И.Н. Флёров^{*,**}, Н.М. Лапташ^{***}

* Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия ** Сибирский федеральный университет, Красноярск, Россия *** Институт химии ДВО РАН, Владивосток, Россия E-mail: fokina@iph.krasn.ru, flerov@iph.krasn.ru

(Поступила в Редакцию 13 августа 2009 г.)

Исследованы тепловые и диэлектрические свойства оксифторида (NH₄)₂NbOF₅. Установлена несегнетоэлектрическая природа структурных фазовых переходов $Cmc2_1 \rightarrow C2 \rightarrow Ia$ при $T_1 = 258.0$ К и $T_2 = 218.9$ К. Гидростатическое давление, стабилизируя исходную и дестабилизируя низкотемпературную фазы, практически не влияет на температурный интервал стабильности промежуточной фазы. С использованием экспериментальных данных о величинах энтропий фазовых переходов выполнен анализ модели последовательного упорядочения структурных элементов в результате фазовых переходов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 09-02-00062), гранта Президента РФ для поддержки ведущих научных школ РФ (НШ-1011.2008.2).

1. Введение

Симметрия оксифторидов $A_2^+ MeO_x F_{6-x}$ И $A_2^+(A')^+MeO_xF_{6-x}$, содержащих в структуре квазиоктаэдрические анионы со смешанными лигандами, может быть весьма разнообразной — от кубической до триклинной — в зависимости от валентности центрального атома, взаимного расположения анионов в кристаллической решетке и состава одновалентных катионов. Те же параметры в значительной мере определяют физические свойства, природу и механизм фазовых переходов, претерпеваемых этими соединениями. Среди оксифторидов $A_2^+(A')^+MeO_3F_3$ (A, A' = K, NH₄, Rb, Cs) со структурой эльпасолита $(A \neq A')$ и криолита $(A \neq A')$ существует ряд мультиферроиков, которые в результате потери устойчивости кубической фазы испытывают структурные искажения, сопровождающиеся одновременным возникновением спонтанной поляризации и деформации [1,2]. Некоторые соединения с другим соотношением лигандов F(O) также претерпевают фазовые переходы. Однако несмотря на наличие дипольного момента в квазиоктаэдрах, обусловленного смещением центрального атома по направлению к кислороду, сегнетоэлектрические фазы в соединениях $A_{2}^{+}MeO_{x}F_{6-x}$ и $A_{2}^{+}(A')^{+}MeO_{x}F_{6-x}$ (x = 1, 2) до сих пор не обнаружены.

Значительная роль центрального атома была установлена при исследованиях соединений $(NH_4)_2 MeO_2F_4$ (Me = W, Mo) калориметрическими, оптическими и структурными методами [3–7]. При комнатной температуре оба кристалла характеризуются ромбической сингонией с пространственной группой Cmcm(Z = 4). Элементарная ячейка содержит две кристаллографически неэквивалентные неупорядоченные аммонийные группы и частично упорядоченные квазиоктаэдры $[MeO_2F_4]$, в которых удалось локализовать только аксиальные атомы фтора и кислорода. При охлаждении оксифториды $(NH_4)_2MeO_2F_4$ испытывают два последовательных фазовых перехода, которые, судя по сильно различающимся изменениям энтропии $\Delta S_1 \sim R \ln 10$ и $\Delta S_2 \sim 0.2R$, являются соответственно превращениями типа порядок-беспорядок и смещения. И на этом заканчивается сходство структур и свойств вольфрамата и молибдата.

Исходная ромбическая структура является существенно более устойчивой к изменению температуры и гидростатического давления в $(NH_4)_2WO_2F_4$ ($T_1 = 200$ K, $dT_1/dp = 13.4$ K/GPa), чем в $(NH_4)_2MOO_2F_4$ ($T_1 = 270$ K, $dT_1/dp = 92.8$ K/GPa). Симметрия низкотемпературных фаз оказывается разной — $P\bar{1}(W)$ и *Рпта* (Mo). В соотвествии с результатами исследования оптических и диэлектрических свойств природа фазовых переходов при T_1 определена как сегнетоэластическая (W) и антисегнетоэлектрическая (Mo).

Замещение центрального катиона W⁶⁺ (или Mo⁶⁺) пятивалентным Nb, вызывающее изменение соотношения фтор-кислородных лигандов в квазиоктаэдре $[MeVOF_5]^{2-}$, сопровождается образованием кристаллических решеток с разнообразной симметрией при варьировании одновалентных катионов; например, в соединениях A_2NbOF_5 A = Li $(P\bar{3}/m, Z = 1)$, Na (Pcnb, Z = 4) K (P4/nmm, Z = 2) [8–10]. О фазовых переходах в этих оксифторидах информация отсутствует. Лишь в [8] высказано предположение о вероятности существования структурного превращения $P4/nmm \rightarrow P4/n$ в K₂NbOF₅, обусловленного возможным упорядочением комплекса [NbOF₅]²⁻, статистически разупорядоченного в исходной фазе по двум эквивалентным положениям. Присутствие аммонийного катиона в структуре оксифторидов независимо от их симметрии, как правило, способствует значительному разупорядочению квазиоктадрических анионов [2,4,6,11], что увеличивает вероятность структурных превращений, обусловленных процессами упорядочения. В настоящей работе выполнены исследования теплоемкости, диэлектрической проницаемости и восприимчивости к гидростатическому давлению кристалла (NH₄)₂NbOF₅. Структура этого оксифторида при комнатной температуре была ранее определена как ромбическая, но в отличие от соединений (NH₄)₂ MeO_2F_5 интерпретировалась как нецентросимметричная $Cmc2_1$, Z = 4 [12].

2. Поисковые исследования

Прозрачные бесцветные монокристаллы $(NH_4)_2NbOF_5$ были выращены в виде тетрагональных призм или многогранников методом растворной кристаллизации. В кипящей 40% кислоте HF в платиновом тигле растворялся Nb_2O_5 с последующим фильтрованием и добавлением раствора NH_4F при соотношении $NH_4^+: H_2NbOF_5 = 2.5.$

Стехиометия состава полученных кристаллических образцов (NH₄)₂NbOF₄ была проверена путем химического анализа. Обнаружено удовлетворительное соответствие рассчитанных и поределенных экспериментальным путем (в скобках) количеств элементов (wt.%): NH₄ — 15.0 (15.0 \pm 0.3), Nb — 38.7 (38.3 \pm 0.5), F — 39.6 (39.4 \pm 0.5).

Структурная характеризация образцов была выполнена при комнатной температуре с помощью рентгеновского дифрактометра D8 ADVANCE. На рентгенограммах не обнаружено пиков, соответствующих примесям исходных компонентов и посторонних фаз. Стабильность исходной ромбической фазы $Cmc2_1$ в зависимости от температуры изучалась путем измерения порошкового образца (NH₄)₂NbOF₅ методом дифференциального сканирующего микрокалориметра (ДСМ-10М). Эксперименты проводились в режимах нагрева и охлаждения со скоростью 8 K/min в интервале температур 110–350 K. Масса образцов составляла 0.11–0.14 g.

На рис. 1 представлены результаты измерений в виде температурной зависимости избыточной теплоемкости ΔC_p , определенной как разность между полной молярной теплоемкостью соединения и его решеточной составляющей. В процессе нагревания обнаружено аномальное поведение теплоемкости в виде двух пиков с температурами максимумов $T_1 = 253$ К и $T_2 = 214$ К. При термоциклировании наблюдался значительный температурный гистерезис $\delta T_1 \approx 4$ К и $\delta T_2 \approx 7$ К, что позволило считать обнаруженные фазовые переходы превращениями первого рода. Присутствие значительной избыточной теплоемкости во всем интервале существования промежуточной фазы затрудняет определение индивидуальных интегральных характеристик фазовых переходов

Рис. 1. Поведение избыточной теплоемкости $(NH_4)_2NbOF_5$ по данным измерений методом ДСМ в режимах нагрева (1) и охлаждения (2).

при T_1 и T_2 . Полное изменение энтальпии, связанное с последовательностью структурных превращений и определенное интегрированием функции $\Delta C_p(T)$, составило $\sum \Delta H_i = 5200 \pm 500 \text{ J/mol.}$

Полученные данные по поиску фазовых переходов и определению их температур были использованы в [12] при уточнении структуры (NH₄)₂NbOF₅; была установлена следующая последовательность фаз при понижении температуры: $Cmc2_1 \rightarrow C2 \rightarrow Ia$.

3. Теплоемкость

В дальнейшем при рассмотрении моделей возможного упорядочения структурных элементов нам будут необходимы более надежно определенные интегральные характеристики фазовых переходов. В связи с этим были предприняты подробные исследования температурной зависимости теплоемкости (NH₄)₂NbOF₅ в значительно более равновесных условиях методом адиабатической калориметрии.

Исследуемый образец в виде набора мелких кристаллов ($\sim 2 \times 2 \times 2$ mm) с общей массой 1.1 g упаковывался в медный контейнер. Вся система герметично запаивалась в инертной атмосфере гелия в индиевую капсулу, которая в свою очередь помещалась в фурнитуру с нагревателем. Измерения теплоемкости системы проводились в режимах непрерывных (dT/dt = 0.15 K/min) и дискретных ($\Delta T = 2.5 - 3.0$ K) нагревов. В непосредственных окрестностях температур фазовых переходов проводилсь исследования методом квазистатических термограмм со средними скоростями нагрева и охлаждения | $dT/dt \approx 0.02$ | K/min. Теплоемкость фурнитуры, состоящей из нагревателя, медной и индиевой капсул, измерялась в отдельном эксперименте.

Температурная зависимость молярной изобарной теплоемкости (NH₄)₂NbOF₅ показана на рис. 2. Помимо

Рис. 2. Температурная зависимость теплоемкости оксифторида (NH₄)₂NbOF₅. Штриховая линия — решеточная теплоемкость. На вставках — термограммы в режиме нагрева в области T_1 и T_2 .

весьма значительных изменений теплоемкости при соответствующих уточненных температурах двух фазовых переходов ($T_1 = 258.00 \pm 0.05$ K и $T_2 = 218.90 \pm 0.05$ K) обнаружены небольшие пики теплоемкости при температурах 297, 261 и 246 K.

Решеточная теплоемкость в области фазовых переходов определялась аппроксимацией экспериментальных данных $C_p(T)$ вне области существования аномалий при помощи функции Дебая-Эйнштейна и показана штриховой линией на рис. 2. Видно, что аномалии теплоемкости, связанные с переходами при T₁ и T₂, перекрываются практически так же, как это наблюдалось в экспериментах на ДСМ при больших скоростях изменения температуры. Обусловленное последовательными структурными превращениями изменение энтальпии (NH₄)₂NbOF₅ $\sum \Delta H_i = 7500 \pm 600$ J/mol значительно превышает величину, определенную с помощью ДСМ. Расхождение данных, полученных разными калориметрическими методами, обусловлено в основном затруднениями определения области наличия аномальной теплоемкости в ДСМ-измерениях. Как видно из рис. 1 и 2, интегрирование в первом случае выполнено в интервале температур 190-265 К, а во втором в значительно более широкой области (150-300 К). К вопросу о возможности определения индивидуальных интегральных тепловых эффектов мы вернемся при анализе совокупности экспериментальных данных, полученных в настоящих исследованиях.

Величины тепловых эффектов, соответсвующих отмечавшимся выше слабым аномалиям теплоемкости при температурах, отличных от T_1 и T_2 весьма малы ($\leq 100 \text{ J/mol}$) по сравнению с суммарной энтальпией переходов. К тому же в поведении других физических свойств никаких особенностей при этих температурах не обнаружено. Поэтому указанные аномалии в дальнейшем мы не будем принимать во внимание.

Результаты исследований окрестностей фазовых переходов методом квазистатических термограмм (вставки на рис. 2) позволили уточнить величины температурного гистерезиса $\delta T_1 = 0.63$ К и $\delta T_2 = 1.04$ К, которые оказались значительно меньше, чем определенные в поисковых ДСМ-исследованиях. Столь большое различие величин δT_i , безусловно, связано с разной степенью равновесности условий измерений. В этих же экспериментах были определены величины скачков энтальпии (скрытые тепло́ты превращений) $\delta H_1 = 710$ J/mol, $\delta H_2 = 480$ J/mol и энтропии $\delta S_1 = \delta H_1/T_1 = 2.8$ J/mol·K, $\delta S_2 = \delta H_2/T_2$ = 2.2 J/mol·K.

Фазовая диаграмма и диэлектрическая проницаемость

Влияние гидростатического давления на температуры и последовательность фазовых переходов в (NH₄)₂NbOF₅ исследовалось методом дифференциального термического анализа под давлением. Чувствительный элемент дифференциальной термопары состоял из последовательно соединенных электродов: медь-германий-медь. К одному из спаев данной термопары приклеивался монокристаллический образец, к другому — кварцевый эталон. Собранная система помещалась в камеру типа цилиндр-поршень, соединенную с мультипликатором, что позволяло проводить измерения до давлений $\sim 0.5\,\mathrm{GPa}$. В качестве среды, передающей давление, использовалось трансформаторное масло. Давление в камере и температура исследуемого образца измерялись с помощью манганинового манометра сопротивления и термопары медь-константан (соответственно с погрешностями порядка $\pm 10^{-3}$ GPa и ± 0.3 K). Достоверность экспериментальных резуль-

Рис. 3. Зависимость температур фазовых переходов в $(NH_4)_2NbOF_5$ от давления.

Рис. 4. Температурные зависимости диэлектрической проницаемости ε (*a*) вдоль направлений *a* — (100), *b* — (010), *c* — (001) и тангенса диэлектрических потерь tg δ (*b*) в направлении *a*.

татов подтверждалась совпадением фазовых границ на *T*-*p*-диаграмме, регистрируемых в режимах роста и уменьшения давления.

Фазовая диаграмма температура–давление, построенная на основе экспериментальных данных о смещении температур переходов под гидростатическим давлением, представлена на рис. 3. При увеличении давления температуры обоих переходов понижаются практически линейно и с одной и той же скоростью: барические коэффициенты составили соответственно $dT_1/dp =$ $= -45.4 \pm 1.5$ K/GPa и $dT_2/dp = -45.2 \pm 1.5$ K/GPa, т. е. оказались одинаковыми в пределах погрешности их определения. Таким образом, наименее податливой к внешним воздействиям оказалась промежуточная фаза *C*2, температурный интервал существования которой под давлением не меняется.

Отрицательный знак барических коэффициентов свидетельствует об уменьшении объема $(NH_4)_2NbOF_5$ при фазовых переходах $Cmc2_1 \rightarrow C2 \rightarrow Ia$ в процессе нагрева. Так как величины δS_i и dT_i/dp близки, в соответствии с уравнением Клапейрона-Клаузиуса $dT/dp = (\delta V/V)\delta S^{-1}$ относительные изменения объема $\delta V/V$ также примерно одинаковы. Образцы для исследований диэлектрической проницаемости представляли собой монокристаллические пластинки толщиной ~ 1 mm, вырезанные параллельно плоскостям (100), (010), (001). Медные электроды наносились на образцы путем напыления в вакууме. Измерения температурных зависимостей диэлектрической проницаемости и тангенса угла потерь были проведены с помощью измерителя иммитанса E7-20 на частоте 1 kHz в интервале температур 100–300 K в процессе нагрева и охлаждения со скоростью ~ 1 K/min. На рис. 4 представлены экспериментальные данные, соответствующие режиму нагрева.

Аномальное поведение $\varepsilon(T)$, представляющее собой ступенчатое возрастание при температурах фазовых переходов, наиболее ярко проявляется вдоль осей *a* и *b* (рис. 4, *a*). Вдоль оси *c* при T_1 изменения ε намного меньше, а при T_2 наблюдался лишь незначительный перегиб. Аномалии тангенса угла диэлектрических потерь в области фазовых превращений выражены еще слабее, что хорошо видно из рис. 4, *b*, где приведена температурная зависимость tg $\delta(T)$ вдоль направления *a*.

5. Анализ и обсуждение результатов

Итак, как это часто наблюдается для аммонийсодержащих оксифторидов с разными симметриями кристаллической решетки и фторкислородного аниона [2-6], соединение (NH₄)₂NbOF₅ в отличие от родственных соединений с атомарными катионами [8-10] испытывает фазовые переходы. Результаты исследования диэлектрической проницаемости свидетельствуют о несегнетоэлектрической природе связанных с ними структурных изменений. Действительно, изменения є при T₁ и T₂ составляют всего лишь несколько единиц, в то время как, например, в оксифториде $(NH_4)_2MoO_2F_4$ антисегнетоэлектрический переход между двумя ромбическими фазами сопровождается изменением є вдоль осей а и с в 3 раза. Для ответа на вопрос о том, являются ли структурные превращения в ниобате сегнетоэластическими, необходимы поляризационно-оптические исследования.

Для анализа механизма структурных искажений, имеющих место в кристалле в результате фазового перехода, и выбора оптимальной модели, описывающей смещения атомов и повороты ионов, необходимо иметь подробные сведения о величинах соответствующего изменения энтропии и о структуре исходной и искаженных фаз.

Связанное с последовательными фазовыми переходами суммарное изменение энтропии представлено на рис. 5 и в насыщении составляет $\sum \Delta S_i = \int (\Delta C_p/T) dT = 37.2 \pm 1.9 \text{ J/mol} \cdot \text{K}$. Для определения вкладов в эту величину от каждого из переходов необходимо разделить соответствующие вклады в теплоемкость.

Какие-либо априорные основания для использования определенной физической модели, описывающей зависимости $\Delta C_p(T)$ в каждой из искаженных фаз

Рис. 5. Температурные зависимости суммарной аномальной энтропии $\sum \Delta S_i$ (1) и составляющих ее вкладов ΔS_1 (2) и ΔS_2 (3), связанных с фазовыми переходами при T_1 и T_2 .

Рис. 6. Аномальная теплоемкость, связанная с последовательностью фазовых переходов в $(NH_4)_2NbOF_5$. Пунктирная линия — результаты экстраполяции ΔC_p , связанной с переходом $Cmc2_1 \rightarrow C2$.

(NH₄)₂NbOF₅, отсутствовали. Поэтому для разделения интегральных характеристик, соответствующих каждому из превращений, был использован следующий подход. Не исключено, что некий параметр (или компонента параметра) перехода, возникающий при T₁, может достигать насыщения как в промежуточной фазе, так и при T < T₂. Поэтому экстраполяция избыточной теплоемкости, связанной с этим параметром перехода и наблюдающейся в фазе C2 вблизи T₁, в область перекрытия аномалий и/или в низкотемпературную фазу Іа была выполнена с помощью метода сглаживающих сплайнов при варьировании в широких пределах температуры обращения в нуль величины ΔC_p (или температуры насыщения параметра перехода). На рис. 6 показана температурная зависимость избыточной теплоемкости, где пунктирная линия соответствует усредненным результатам экстраполяции.

При таком подходе с учетом некоторого произвола в выборе температуры, при котрой для перехода $Cmc 2_1 \rightarrow C2$ величина $\Delta C_p \rightarrow 0$, энтропии для каждого из последовательных превращений отягощены большей относительной ошибкой их определения, чем суммарная величина $\sum \Delta S_i$, и составляют соответственно $\Delta S_1 = 21.6 \pm 2.1 \text{ J/mol} \cdot \text{K}$ и $\Delta S_2 = 16.6 \pm 1.6 \text{ J/mol} \cdot \text{K}$ (рис. 5). Столь большие величины ΔS_i являются неоспоримым доказательством связи обоих структурных искажений в (NH₄)₂NbOF₅ с процессами упорядочения структурных элементов.

Так как рассматриваемые фазовые переходы являются структурными и не исключено, что сегнетоэластическими, поведение физических свойств $(NH_4)_2NbOF_5$ вполне может соответствовать ожидаемому из феноменологической теории Ландау. Одно из следствий анализа термодинамического потенциала $\Delta\Phi(p, T, \eta) =$ = $[A_T(T_i - T_C) + A_T(T - T_i)]\eta^2 + B\eta^4 + C\eta^6$ свидетельствует о линейной зависимости величины $(\Delta C_p/T)^{-2}$ от температуры [13].

$$\left(\frac{\Delta C_p}{T}\right)^{-2} = \frac{2\sqrt{B^2 - 3A_T(T_i - T_C)C}}{A_T^2} + \frac{12C}{A_T^3} + (T_i - T).$$
(1)

Температурная зависимость квадрата обратной избыточной теплоемкости (NH₄)₂NbOF₅ в фазах C2 и Іа представлена на рис. 7. Очевидно, что уравнение (1)удовлетворительно описывает экспериментальные результаты в достаточно широких температурных интервалах обеих искаженных фаз. И это является косвенным подтверждением обоснованности выбранного нами подхода к разделению аномальных теплоемкостей для разных переходов. коэффициентами потенциала Соотношения между составили: для перехода $Cmc2_1 \rightarrow C2 - A_T^3/C =$ $= 25.4 \,\mathrm{J}^2 \cdot \mathrm{mol}^{-2} \cdot \mathrm{K}^{-3}$ $A_T^2/B = -2.3 \,\mathrm{J} \cdot \mathrm{mol} \cdot \mathrm{K}^{-2},$ И а в случае превращения $C2 \rightarrow Ia$ — $A_T^3/C =$ $= 18.1 \, J^2 \cdot mol^{-2} \cdot K^{-3}$ $A_T^2/B = -5.2 \,\mathrm{J} \cdot \mathrm{mol} \cdot \mathrm{K}^{-2}.$ И Величина $N = \pm \sqrt{B^2/3A_T CT_C}$ характеризует степень

Рис. 7. Поведение анмальной теплоемкости $(NH_4)_2NbOF_5$ в соответствии с уравнением (1) при $T < T_2$ (*a*) и $T < T_1$ (*b*).

близости переходов к трикритической точке. Температура Кюри T_C связана с температурой фазового перехода T_i соотношением $T_C = T_i - B^2/(4A_TC)$. Рассчитанные для $(\mathrm{NH}_4)_2\mathrm{NbOF}_5$ значения $N_1 = -0.077$ и $N_2 = -0.033$ однозначно свидетельствуют о том, что оба перехода, хотя и обнаруживают неоспоримые признаки первого рода ($\delta T_i \neq 0$, $\delta S_i \neq 0$), весьма близки к трикритической точке. Об этом свидетельствуют также еще два обстоятельства. Во-первых, это небольшой вклад скачков энтропии в полное изменение в результате переходов $\delta S_1/\Delta S_1 = 0.13$, $\delta S_2/\Delta S_2 = 0.13$; во-вторых, небольшие разности между температурами перехода и температурами обращения в нуль величины ($\Delta C_p/T$)⁻², которые составили 0.39 и 0.06 K для T_1 и T_2 соответственно.

При уточнении структуры высокотемпературной фазы (NH₄)₂NbOF₅ в [12] рассматривалось несколько возможных пространственных групп, в частности группа Стст, предложенная ранее для родственных оксифторидов с шестивалентным центральным атомом $(NH_4)_2 MeO_2F_4$ [5,7]. Основанием для выбора в случае (NH₄)₂NbOF₅ иной пространственной группы Cmc2₁ послужили как меньшая (хотя и незначительно) величина фактора надежности R по сравнению с группой Стст, так и более обосновнные расстояния Nb-F(O) [12]. Одним из главных аргументов для выбора структуры промежуточной фазы (пр. гр. С2) являлась нецентросимметричность исходной и самой низкотемпературной (пр. гр. Іа) фаз. Следует обратить внимание на то, что выбранные в [12] пространственные группы всех фаз не связаны соотношением группа-подгруппа. Это значит, что для (NH₄)₂NbOF₅ может существовать некая высокосимметричная прафаза, для которой группы Стс21, С2 и Іа являются подгруппами, а фазовые переходы $Cmc2_1 \rightarrow C2 \rightarrow Ia$ возможны только в виде превращений первого рода. Приведенный выше анализ теплоемкости показал, что (NH₄)₂NbOF₅ действительно испытывает два перехода первого рода, но очень близкие к трикритической точке.

В [12] установлено полное упорядочение структурных элементов в фазе Ia, приводящее к появлению нескольких типов кристаллографически неэквивалентных квазиоктаэдров [NbOF₅] и тетраэдров [NH₄]. Используя подробные сведения о координатах всех атомов в фазе Ia проанализируем возможное последовательное разупорядочение этих полиэдров при изменении симметрии в результате фазовых переходов и соответствующее этим процессам изменение энтропии.

Два типа квазиоктаэдров, развернутых в низкотемпературной фазе относительно друг друга на небольшой угол, становятся идентичными в промежуточной фазе. Таким образом, можно предположить, что при переходе в фазу *C*2 квазиоктаэдр динамически разупорядочивается именно по этим двум положениям. При этом же переходе уменьшается от четырех до двух число типов неэквивалентных тетраэдров. Учитывая, что в примитивной ячейке содержится два катиона аммония, разупорядочение обоих видов полиэдров в результате изменения симметрии $Ia \rightarrow C2$ должно приводить к изменению энтропии $R \ln 2 + 2R \ln 2 = R \ln 8 = 17.3 \text{ J/mol} \cdot \text{K}.$

При переходе $C2 \rightarrow Cmc2_1$ число ориентаций квазиоктаэдра увеличивается в 3 раза. При этом происходит также разупорядочение обоих типов неэквивалентных тетраэдров, сопровождающееся увеличением числа ориентаций каждого из них по крайней мере вдвое. Следовательно, изменение энтропии при рассматриваемом переходе дожно составлять $R \ln 3 + 2R \ln 2 = R \ln 12$ = 20.7 J/mol · K.

Достоверность выполненных рассуждений подтверждается тем фактом, что обе рассчитанные энтропии фазовых переходов удовлетворительно согласуются с экспериментально определенными величинами $\Delta S_1 = 21.6 \pm 2.1 \text{ J/mol} \cdot \text{K}$ и $\Delta S_2 = 16.6 \pm 1.6 \text{ J/mol} \cdot \text{K}$.

Предложенная модель упорядочения структурных элементов в $(NH_4)_2NbOF_5$, естественно, нуждается в уточнении путем детальных исследований структуры, например, методами рассеяния нейтронов.

Следует обратить внимание на то, что состав фторкислородного аниона существенно влияет на степень разупорядочения в ромбической структуре как самого квазиоктаэдра, так и аммонийных тетраэдров. Наиболее наглядно это обстоятельство проявляется при сравнении энтропий фазовых переходов в (NH₄)₂NbOF₅ и $(NH_4)_2 MeO_2F_4$ (*Me* = W, Mo) [4,6]. В последних соединениях переход из исходной ромбической фазы также связан с процессами упорядочения, и величина изменения энтропии $\Delta S_1 \approx R \ln 9$ близка к энтропии, определенной в настоящей работе для ниобата. Однако низкотемпературный переход в вольфрамате и молибдате в отличие от ниобата сопровождается незначительным изменением энтропии и является превращением типа смещения. Сопутствующие структурные изменения, повидимому, настолько малы, что в рентгеновских исследованиях этот переход не зафиксирован [5,7].

6. Заключение

В результате исследования теплоемкости, диэлектрической проницаемости и восприимчивости к высоким давлениям установлено, что оксифторид (NH₄)₂NbOF₅ испытывает два фазовых перехода несегнетоэлектрической природы. Определенные изменения энтропии при последовательных изменениях структуры явно свидетельствуют об их связи с процессами порядок-беспорядок. Совместный анализ структуры (NH₄)₂NbOF₅ и калориметрических данных позволил построить модель, описывающую процессы упорядочения в результате фазовых переходов.

Авторы выражают глубокую признательность А.А. Удовенко (Институт химии ДВО РАН) за любезно предоставленные подробные данные о координатах атомов (NH₄)₂NbOF₅.

Список литературы

- [1] J. Ravez, G. Peraudeau, H. Arend, S.C. Abrahams, P. Hagenmüller. Ferroelectrics **26**, 767 (1980).
- [2] И.Н. Флёров, В.Д. Фокина, А.Ф. Бовина, Е.В. Богданов, М.С. Молокеев, А.Г. Кочарова, Е.И. Погорельцев, Н.М. Лапташ. ФТТ 50, 3, 497 (2008).
- [3] С.В. Мельникова, В.Д. Фокина, Н.М. Лапташ. ФТТ 48, 1, 110 (2006).
- [4] И.Н. Флёров, В.Д. Фокина, М.В. Горев, А.Д. Васильев, А.Ф. Бовина, М.С. Молокеев, А.Г. Кочарова, Н.М. Лапташ. ФТТ 48, 4, 711 (2006).
- [5] С.В. Мельникова, А.Д. Васильев, Н.М. Лапташ. Тр. симп. ОDPO-10. Издат.-печат. отд. Политехн. ин-та Южн. федер.ун-та, Ростов-н/Д, (2007). Ч. II. С. 172.
- [6] В.Д. Фокина, Е.В. Богданов, Е.И. Погорельцев, В.С. Бондарев, И.Н. Флёров, Н.М. Лапташ. ФТТ 52, 1, 148 (2010).
- [7] A.A. Udovenko, N.M. Laptash. Acta Cryst. B 64, 645 (2008).
- [8] Г.З. Пинскер. Кристаллография 11, 741 (1966).
- [9] J. Galy, S. Andersson, J. Portier. Acta Chem. Scand. 23, 2949 (1969).
- [10] R. Stomberg. Acta Chem. A 38, 603 (1984).
- [11] И.Н. Флёров, М.В. Горев, В.Д. Фокина, А.Ф. Бовина, Н.М. Лапташ. ФТТ 46, 5, 888 (2004).
- [12] A.A. Udovenko, N.M. Laptash. Acta Cryst. B 64, 527 (2008).
- [13] К.С. Александров, И.Н. Флёров. ФТТ 21, 2, 327 (1979).