Малоугловое рассеяние с переворотами спина нейтрона в ферромагнитных пленках

© А.В. Ковалев

Петербургский институт ядерной физики им. Б.П. Константинова РАН, Гатчина, Ленинградская обл., Россия

E-mail: kovalev@pnpi.spb.ru

Приводятся результаты рефлектометрических измерений на анизотропных ($Co_{67}Fe_{31}V_2$) и почти изотропных (Fe) пленках, изготовленных методом магнетронного распыления. На образцах указанного сплава незеркальные отражения и соответствующие пики интенсивностей преломленных нейтронов наблюдались при магнитных полях $H \leq 7$ Oe, приложенных в плоскости пленки вдоль направления легкой оси намагничивания. Для пленок железа угловое расщепление отраженного поля. Предлагаемая общая схема такого малоуглового рассеяния, в которой учитываются разные варианты изменения зеемановской энергии нейтрона, позволила идентифицировать магнитные структуры Co–Fe-пленок. После намагничивания пленок толщиной $0.15\,\mu$ m с одноосной и однонаправленной текстурами получились однонаправленные текстуры, но разные распределения интенсивностей, качественные различия которых сохранились при росте поля от 7 до 800 Oe. Для пленки толщиной $2.5\,\mu$ m с исходной однонаправленной текстурой обнаружена неэквивалентность противоположно намагниченных состояний.

Работа выполнялась в рамках программы ОФН РАН "Нейтронные исследования структуры вещества и фундаментальных свойств материи" и при частичной финансовой поддержке гранта РФФИ № 07-02-00290.

1. Введение

Обнаруженный в работе [1] эффект назван авторами "зеемановским расщеплением". На угловых распределениях интенсивностей отраженных пленками нейтронов, к которым прикладывались магнитные поля $H > 4 \,\mathrm{kOe}$, наблюдались незеркальные отражения с переворотом спина нейтрона, причиной чего оказывается двулучепреломление нейтронных волн на границе пленки. При малых Н такие отражения кажутся зеркальными (далее "зеркальные" отражения); их интенсивности зависят от степени упорядочения направлений намагниченностей доменов и геометрии измерений, что предполагалось использовать при исследовании механизма сильного термомагнитного эффекта [2]. Однако после обнаружения [3] незеркальных отражений другого типа, происхождение которых не удалось объяснить [4] в рамках модели доменной структуры, предложенной авторами работы [5], начали рассматриваться возможности решения более сложных задач.

Наличие анизотропных пленок с однонаправленной магнитной текстурой позволило установить [6], что картина незеркальных отражений, наблюдаемая на пленках Со–Fe-сплава при малых магнитных полях, оказывается частным случаем асимметричного малоуглового рассеяния, на которое, например, указывается в связи с изучением динамики спиновых волн [7]. Поэтому при разработке общей схемы незеркальных отражений рассматриваемого типа учитывалась необходимость объяснения их природы и для однородно намагниченного образца. Такая модель, после очевидной ее модификации для простых магнитных текстур Со–Fe-пленок, используется для анализа приводимых далее экспериментальных данных.

2. Общая схема углового распределения интенсивностей отраженных нейтронов

В идеальной модели предполагается: 1) исходный пучок полностью поляризован; 2) пленка однородно намагничена, но между направлением ее индукции **B** и внешним полем **H** имеется угол $\alpha \leq 90^{\circ}$; 3) переворот спина нейтрона внутри пленки не приводит к дополнительному изменению компоненты его импульса, нормальной к поверхности образца. Определенная нами поляризация падающего на образец пучка $P_0 \geq 0.99$, что достаточно для выполнения первого условия. Предварительное рассмотрение простой физической картины "зеемановского расщепления" позволит естественным образом перейти к более сложной модели, для использования которой необходима однозначная идентификация наблюдаемых пиков интенсивностей рассеянных нейтронов.

Будем считать, что при входе в образец имеется "чистое" состояние $S \uparrow \uparrow H$, где S — спин нейтрона, направление которого противоположно магнитному моменту μ . Измеренное после рассеяния образцом распределение интенсивности нейтронов, для которых $S \uparrow \uparrow H$, обозначим символом J(00), а распределение для $S \uparrow \downarrow H$ символом J(01). После включения устройства, которое называется флиппером, перед образцом получится состояние $S \uparrow \downarrow H$. В этом случае измеряются интенсивности J(11) и J(10). Для отдельных пиков интенсивностей используются символы типа (01) с последующей их классификацией. Отметим, что если $\alpha > 90^\circ$, то в приведенных обозначениях необходимо сделать замену $0 \leftrightarrow 1$.

(12)

Для состояния **S** $\uparrow\uparrow$ **H** потенциальная энергия нейтрона $U_m = -\mu \mathbf{H} = \mu H$. После пересечения границы пленки вероятность обнаружения нейтрона с направлением спина вдоль **B** равна $\cos^2(\alpha/2)$, а его потенциальная энергия *U* изменится на величину

$$\Delta U_+ = \mu (B - H) + U_f, \qquad (1)$$

где U_f — энергия ядерного взаимодействия нейтрона с материалом пленки. Вероятность реализации состояния с противоположной проекцией спина — $\sin^2(\alpha/2)$, а

$$\Delta U_{-} = -\mu(B+H) + U_f. \tag{2}$$

Волны, соответствующие каждому из преломленных лучей, с некоторыми вероятностями отражаются пленкой, при выходе из которой также происходит повторное двулучепреломление, в результате чего образуются четыре волны χ_i с разной последовательностью спиновых переходов

$$\begin{array}{ll} \chi_1 = (++)(++), & \chi_2 = (++)(+-), \\ \chi_3 = (+-)(--), & \chi_4 = (+-)(-+), \end{array} \tag{3}$$

Волны χ_1 и χ_4 вносят вклады в пик (00), а волны χ_2 и χ_3 — в пик (01).

Угловые положения отраженных пиков определяются изменением потенциальной энергии нейтрона после взаимодействия с образцом: $\Delta U_m(00) = 0$, но $\Delta U_m(01) = -2\mu H$. Аналогичным образом получим $\Delta U_m(11) = 0$, $\Delta U_m(10) = 2\mu H$. Изменение импульса нейтрона при пересечении границы раздела двух сред происходит в направлении градиента потенциала, т. е. вдоль нормали к плоскости пленки, что в сочетании с законом сохранения энергии позволяет вычислить [1] угловые положения отражений (01) и (10)

$$(\vartheta_f)^2 \approx (\vartheta_i)^2 \pm 1.47 \cdot 10^{-7} H \lambda^2,$$
 (4)

где ϑ_f и ϑ_i — углы скользящего отражения и падения в радианах, H измеряется в kOe, λ — длина волны нейтрона в Å. Знак "+" здесь относится к пику (01). При малых значениях углов ϑ_f и ϑ_i и замене $\vartheta_f = \vartheta_i \pm \varepsilon$ вместо (4) можно написать

$$\varepsilon \approx \pm (1.47 \cdot 10^{-7} H \lambda^2) / 2 \vartheta_i.$$
 (5)

Величина $\Delta U_m \approx 1.2 \cdot 10^{-8} \text{ eV/kOe}$ мала по сравнению с кинетической энергией нейтрона, которая для длин волн $\lambda = 2-10 \text{ Å}$ равна $(20-0.8) \cdot 10^{-3} \text{ eV}$. Для установки "Вектор" (реактор ВВР-М, Гатчина), на которой выполнялись измерения, $\varepsilon \approx 8'$ при H = 10 kOe и $\vartheta_i \approx 40'$.

Для интегральных интенсивностей отраженных пиков легко получить

$$Q(00) = K[r^{+}\cos^{4}(\alpha/2) + r^{-}\sin^{4}(\alpha/2)], \qquad (6)$$

$$Q(11) = K[r^{+}\sin^{4}(\alpha/2) + r^{-}\cos^{4}(\alpha/2)], \qquad (7)$$

$$Q(01) = Q(10) = K(r^{+} + r^{-})\sin^{2}(\alpha/2)\cos^{2}(\alpha/2), \quad (8)$$

где K — множитель, пропорциональный интенсивности нейтронного пучка и времени измерения, r^+ и r^- —

коэффициенты отражения для двух типов нейтронных волн при выбранном ϑ_i .

Теперь остается учесть разные варианты изменения спиновых состояний нейтрона на границе пленки и в ее объеме, вычислить соответствующие величины ΔU_m и квадраты амплитуд вероятностей. В результате для восьми возможных пиков незеркальных отражений получим

$$(00)a: (++)(+-)(-+), \quad 2\mu B,$$

$$\eta^{+-}\cos^2(\alpha/2)\sin^2(\alpha/2), \tag{9}$$

$$\begin{array}{ll} 00)b: & (+-)(-+)(++), & -2\mu B, \\ & \eta^{-+}\sin^2(\alpha/2)\cos^2(\alpha/2), \end{array}$$
(10)

(

$$(01)a: (++)(+-)(--), \quad 2\mu(B-H),$$

$$\eta^{+-}\cos^4(\alpha/2),\tag{11}$$

(01)*b*:
$$(+-)(-+)(+-)$$
, $-2\mu(B+H)$,
 $\eta^{-+}\sin^4(\alpha/2)$,

11)*a*:
$$(--)(-+)(+-)$$
, $-2\mu B$,
 $\eta^{-+}\cos^2(\alpha/2)\sin^2(\alpha/2)$, (13)

(11)b:
$$(-+)(+-)(--), \quad 2\mu B,$$

 $\eta^{+-}\sin^2(\alpha/2)\cos^2(\alpha/2),$ (14)

(10)*a*:
$$(--)(-+)(++), -2\mu(B-H),$$

 $\eta^{-+}\cos^4(\alpha/2),$ (15)

(10)b:
$$(-+)(+-)(-+), \quad 2\mu(B+H),$$

 $\eta^{+-}\sin^4(\alpha/2),$ (16)

где η^{+-} и η^{-+} — коэффициенты отражения нейтронных волн с переворотом спина нейтрона внутри пленки, величины которых задаются параметрами конкретного образца и условиями измерений.

Модель однородно намагниченной пленки фактически использовалась при трактовке описанного выше простого варианта "зеемановского расщепления", для наблюдения которого сильные магнитные поля прикладывались вдоль нормали к плоскости пленки [1] или под углом $\chi = 76^{\circ}$ [8] к ее поверхности. Считается, что при таких условиях из-за анизотропии формы образца между векторами **B** и **H** имеется угол α , величина которого падает с ростом *H*.

Проверка предлагаемой схемы выполнялась [9] на пленках толщиной $2.5\,\mu$ m, в которых имелась сильная однонаправленная текстура с большими латеральными размерами магнитных доменов [10]. Такая текстура не изменялась после приложения поля $H \leq 7$ Ое вдоль любого направления в плоскости пленки, что и позволило

Рис. 1. Угловые распределения интенсивностей рассеянных нейтронов J(00) (*a*), J(11) (*b*), J(01) (*c*) и J(10) (*d*) после изготовления (*1*) и кратковременного намагничивания образца (*2*) в поле H = 800 Ос. Измерения при H = 7 Ос, зеркальные отражения при $\theta \approx 91'$.

на круглом образце получить зависимости интенсивностей разных пиков от угла α , которые соответствуют выражениям (6)–(8) и (11), (15). Угол $\alpha = \langle |\alpha_i| \rangle$ отсчитывался от положения образца, при котором $\langle \mathbf{B}_i \rangle \uparrow \uparrow \mathbf{H}$, где \mathbf{B}_i — локальная индукция на границе пленки, α_i — угол между \mathbf{B}_i и $\langle \mathbf{B}_i \rangle$. В этом же опыте получено и очевидное следствие выражений (6)–(16): при $\alpha = 90^{\circ}$ интенсивности отраженных нейтронов для четырых состояний флипперов одинаковы и на каждой кривой J(ij) наблюдается по два слабых незеркальных пика.

При малых $\langle |\alpha_i| \rangle$ и $\langle \mathbf{B}_i \rangle \uparrow \uparrow \mathbf{H}$ ($\langle \alpha_i \rangle = 0$) видны лишь незеркальные пики (01) и (10), интенсивности которых пропорциональны $\cos^4(\langle |\alpha_i| \rangle/2)$. Теперь понятно, что "необычный" ход зависимостей интенсивностей этих пиков от угла ϑ_i , впервые обнаруженный в работе [5], объясняется поведением функций $\eta^{+-}(\vartheta_i)$ и $\eta^{-+}(\vartheta_i)$, которые для пленок-поляризаторов нейтронного пучка ($r^+ \gg r^-$) в нашей модели должны иметь максимумы при разных углах ϑ_i .

Для определения угловых положений незеркальных отражений в формулах (4) и (5) необходимо заменить H величинами B или ($B \pm H$). Кроме того, при B > H одноименные незеркальные отражения [(01) или (10)] двух типов находятся по разные стороны от положения зеркальных отражений и смещаются в противоположных

направлениях при росте *H*. Такие результаты получены при полях от 190 Ое до 12 kOe, приложенных перпендикулярно плоскости пленки.

Описание установки "Вектор" можно найти в [11], а особенности ее использования в режиме рефлектометра будут отмечаться при изложении конкретных опытов. Следует иметь в виду, что в измеряемых интенсивностях "зеркальных" отражений содержатся компоненты, причиной которых считается частичная поляризация первичного нейтронного пучка и его деполяризация детекторной системой. Нами разработана соответствующая методика обработки экспериментальных данных, позволяющая определять действительные величины "зеркальных" отражений.

3. Исходные магнитные текстуры и результаты, полученные при намагничивании Со–Fe-пленок

В общем случае взаимосвязь рефлектометрических данных с пространственным распределением магнитных полей (индукции) в образцах неоднозначна [12], но в наших Со–Fe-пленках методом векторного анализа поляризованных нейтронов обнаружены простые маг-

Рис. 2. Интенсивности отражений J(01) (*a*) и J(10) (*b*) для первого (*1*) и второго (*2*) образцов после приложения поля H = 800 Ос. Измерения при H = 7 Ос.

Рис. 3. Интенсивности отражений J(01) (*a*) и J(10) (*b*) для первого (*1*) и второго (*2*) образцов при H = 800 Ос.

нитные текстуры [10], картины угловых распределений интенсивностей для которых приведены на рис. 1. На всех аналогичных рисунках пики зеркальных отражений соответствуют угловому положению детектора $\theta = 2\vartheta_i$, а направление прямого пучка — углу $\theta = 0$.

После напыления пленки толщиной 0.15μ m на стеклянную подложку размером $210 \times 80 \times 5$ mm в ней обнаружена одноосная текстура с противоположными направлениями намагниченностей доменов. Поэтому на рис. 1, *с* и *d* имеется по два пика незеркальных отражений. Две системы пиков наблюдаются и для угловых распределений интенсивностей преломленных нейтронов. После приложения к пленке магнитного поля H = 800 Ое вдоль легкой оси намагничивания и последующего его снижения до 7 Ое получилась характерная для однонаправленной текстуры картина малоуглового рассеяния.

При изготовлении другой пленки с такими же размерами в ней образовалась однонаправленная текстура. Картина рассеяния не изменилась после описанной выше магнитной обработки, но через два года в этом образце было обнаружено около 5% доменов с противоположными направлениями намагниченностей [13,14]. Далее приводятся результаты измерений, выполненных в течение одних суток.

Для двух образцов интегральные интенсивности зеркальных отражений Q(00) и Q(11) одинаковы в пределах 3%, но угловые распределения интенсивностей J(01) и J(10), показанные на рис. 2, сильно различаются. Самой простой причиной такого различия могут быть разные величины средних значений углов α , для определения которых используем выражения (6) и (8). В результате получим $\langle |\alpha_i| \rangle \approx 11$ и $\approx 28^\circ$. Отметим, что "зеркальным" отражениям при $\theta \approx 91'$ соответствуют пики интенсивностей преломленных нейтронов при $\theta \approx 15'$.

Теперь сравним остальные пики на рис. 2. Интенсивности незеркальных пиков (01) при $\theta \approx 65'$ в пределах 7% совпадают, но интенсивность незеркального пика (10) ($\theta \approx 130'$) для первого образца на 90% больше. Для преломленных нейтронов ($\theta \approx -10'$) на рис. 2, *b* видим, естественно, обратное соотношение интенсивностей пиков (10).

При увеличении приложенного к образцам магнитного поля до 800 Ое угловые распределения интенсивностей сильно изменились (рис. 3): стали одинако-

Рис. 4. Интенсивности для противоположно намагниченных состояний пленки (up и down). Измерения при $H = 7 \text{ Oe}, \vartheta_i = 45'$.

выми величины "зеркальных" пиков, но наблюдается существенное различие незеркальных отражений. Кроме того, отметим, что при росте поля от 7 до 800 Ое "зеркальные" отражения для первого образца практически не изменились. Из рис. 3, *а* хорошо видны и разные структуры незеркального отражения (01) при $\theta < 85'$. Приведенные результаты очень сложно (может быть, и невозможно) объяснить, используя лишь простые модели однонаправленных магнитных текстур с разными величинами $\langle |\alpha_i| \rangle$, что опять приводит к вопросу о механизмах переворота спина нейтрона в конкретных образцах. Можно, например, предположить, что для второго образца в "зеркальных" отражениях (01) и (10) при H = 7 Ое имеются две компоненты, одна из которых исчезает при H = 800 Ое.

4. Противоположно намагниченные состояния пленки

При перемагничивании Со-Fe-пленок часто наблюдаются эффекты, которые указывают на некую неэквивалентность противоположно намагниченных состояний. Приведенные на рис. 4 экспериментальные данные получены следующим образом. После изготовления пленки толщиной $2.5\,\mu\text{m}$ и размерами $210 \times 80\,\text{mm}$ в ней обнаружена однонаправленная магнитная текстура. Внешнее магнитное поле прикладывалось вдоль направления легкой оси намагничивания (короткая сторона). Юстировка образца выполнялась так, чтобы при выбранном угле ϑ_i максимум интенсивности зеркального отражения J(00) наблюдался при соответствующем положении детекторной системы. После приложения поля H = 750 Ое ток электромагнита выключался, и в остаточном поле H = 7 Ое выполнялись измерения угловых распределений интенсивностей. Затем пленка поворачивалась на 180° вокруг нормали к ее поверхности и процедура повторялась. Символ "up" соответствует M 11 H, где M — намагниченность исходного состояния пленки. Из рис. 4 видно сильное изменение "зеркального" отражения (10) после перемагничивания пленки: $T = Q_{\text{down}}(10)/Q_{\text{up}}(10) = 3.3(1)$, но при этом заметных различий интенсивностей других пиков не наблюдалось. Для $\vartheta_i = 39$ и 52′ получен такой же результат: T = 3.0(2).

Этот образец часто использовался для калибровочных измерений ($\vartheta_i \approx 39'$), среди которых нашлись измерения при 7 и 750 Ое, которые для противоположно намагниченных состояний выполнялись с интервалом более двух лет. Причиной полученного при H = 7 Ое меньшего значения T = 2.3(1) может быть уже известное "старение" пленки [13,14]. Более существенным моментом можно считать то, что при H = 750 Ое интенсивности "зеркальных" и незеркальных отражений (10) стали меньше примерно в 3 раза, но параметр T не изменился.

5. Рефлектометрические измерения на пленке железа

Часто предполагают, что происхождение незеркальных отражений обусловлено присутствием латеральных флуктуаций плотности длины рассеяния нейтронов с размерами меньше латеральной проекции длины когерентности нейтрона. В частности, наличием магнитных доменов "подходящих размеров" объясняются [15] и результаты [5]. Приведенных выше и в работе [9] экспериментальных данных достаточно для однозначного вывода: причиной наблюдаемых нами незеркальных отражений является изменение зеемановской энергии нейтрона после его взаимодействия с образцом. Тем не менее причиной сильных различий угловых распределений интенсивностей рассеянных нейтронов являются, по-видимому, размеры магнитных доменов, для демонстрации чего приведем небольшой фрагмент исследований в этом направлении.

Пленка железа толщиной 2 μ т изготовлена при тех условиях, что и Со–Fе-пленки, но в ней не обнаружено остаточной намагниченности до и после приложения поля H = 800 Ое. Толщина стеклянной подложки — 0.4 mm. Образец приклеивался на стеклянную пластину

Рис. 5. Интенсивности *J*(01) (*1*,3) и *J*(10) (*2*,4), измеренные на пленке Fe при 420 (*1*,2) и 770 Ос (*3*,4).

Рис. 6. Полевые зависимости разности $\Delta \theta$ угловых положений пиков (01) и (10) и отношения S = (Q(00) - Q(11))/(Q(00) + Q(11)) для пленки железа при $\vartheta_i = 39'$.

толщиной 5 mm. Такая конструкция и сильное поглощение нейтронов в борированном стекле подложки позволяют работать только с отраженными пучками.

Расщепление "зеркальных" и незеркальных отражений при любом направлении Н в плоскости пленки железа видно лишь при больших величинах Н. Вблизи максимальной величины угла полного отражения, когда интенсивность пика (00) начинает падать, незеркальное отражение (01), как и для Со-Fe-пленок, имеет очень малую интенсивность. Поэтому на рис. 5 видны "зеркальные" ($\theta \approx 65'$) и незеркальные пики (10). При росте магнитного поля от 440 до 770 Ое интегральные интенсивности "зеркальных" отражений падают примерно на 70%, а незеркальных растут на такую же величину. При большем угле скользящего падения ($\vartheta_i \approx 39'$) появляется незеркальный пик (01), и на рис. 6 приведена полевая зависимость $\Delta \theta$ углового расстояния между ним и незеркальным отражением (10). Там же показано и отношение S = (Q(00) - Q(11)) / (Q(00) + Q(11)), которое считается мерой намагниченности пленки. Таким образом, $\Delta \theta$ пропорционально величине $\langle \mathbf{B}_i \rangle$, что соответствует выражениям (11) и (15). Полуширины всех отраженных пиков не изменяются при росте *H*, т.е. диффузное рассеяние на магнитных неоднородностях здесь не проявляется.

Выражения (8) и (15), казалось бы, позволяют понять и причину качественного различия полевых зависимостей интенсивностей "зеркальных" и незеркальных пиков (рис. 5), но в них содержатся коэффициенты отражений r и η , зависимости которых от параметра $\langle |\alpha_i| \rangle$ неизвестны. Поэтому пока можно лишь предположить, что незеркальные отражения являются результатом когерентного малоуглового рассеяния. Такое предположение не противоречит полученным нами многочисленным экспериментальным данным, но для его проверки необходимы дополнительные исследования, в частности измерения в сильных магнитных полях, ортогональных плоскости пленки. Отметим также, что для пленки железа интенсивности "зеркальных" отражений соответствуют выражению (8).

6. Заключение

Рефлектометрия поляризованных нейтронов, казалось бы, позволяет довольно просто определить доменную структуру анизотропной пленки с большой остаточной намагниченностью. Полное решение этой задачи пока не получено, но выполненных на таких образцах результатов измерений оказалось достаточно для построения общей схемы асимметричного малоуглового рассеяния. Очевидное следствие нашей схемы — возможность однозначной идентификации одноосных и однонаправленных магнитных текстур, что существенно при изучении природы наведенной анизотропии и других проявлений "магнитной памяти". Кроме того, обнаруженные эффекты позволяют считать целесообразным использование предлагаемой методики для исследования механизмов переворота спина нейтрона в конкретных образцах.

Автор благодарит многих сотрудников Отделения нейтронных исследований за существенную помощь на разных этапах работы, а также сменный персонал реактора BBP-M за возможность выполнения длительных измерений.

Список литературы

- G.P. Felcher, S. Adenwalla, V.O. De Haan, A.A. Van Well. Nature 377, 409 (1995).
- [2] А.В. Ковалев, Г.Е. Шмелев. Поверхность. Рентгеновские, синхротронные и нейтронные исследования 4, 33 (2001).
- [3] А.В. Ковалев. Поверхность. Рентгеновские, синхротронные и нейтронные исследования **10**, 51 (2004).
- [4] A.V. Kovalev. Physics of electronic materials. 2rd Int. Conf. Proc. Kaluga (2005). V. 1. P. 49.
- [5] Th. Krist, D.J. Müller, F. Mezei. Physica B 267–268, 194 (1999).

- [6] А.В. Ковалев. Междунар. научн. конф. "Актуальные проблемы физики твердого тела". Сб. докл. Минск (2007). Т. 1. С. 95.
- [7] S.V. Grigoriev, S.V. Maleyev, V.V. Deriglazov, A.I. Okorokov, N.H. van Dijk, E. Brück, J.C.P. Klaasse, H. Eckerlebe, G. Kozik. Appl. Phys. A 74 (Suppl.), 719 (2002).
- [8] Д.А. Корнеев, В.И. Боднарчук, В.К. Игнатович. Письма в ЖЭТФ 63, 900 (1996).
- [9] А.В. Ковалев. Исследовано в России. Электрон. журн. 36, 343 (2007); http://zhurnal.ape.relarn.ru/articles/2007/036.pdf.
- [10] A.V. Kovalev, L.A. Akselrod. Cond-mat/0011424.
- [11] A.L. Okorokov, V.V. Runov. Physica B 297, 239 (2001).
- [12] G.P. Felcher. Physica B 267-268, 154 (1999).
- [13] A.V. Kovalev. Physics of electronic materials. 3rd Int. Conf. Proc. Kaluga (2008). V. 2. P. 160.
- [14] A.V. Kovalev. Moscow Int. Symp. on magnetism. Book of Abstracts. M. (2008). P. 172.
- [15] B.P. Toperverg. Physica B 297, 160 (2001).