Влияние скорости нарастания индукции на спектральные характеристики люминесценции ZnS: Mn при обработке его магнитным полем

© Ю.Ю. Бачериков

Институт физики полупроводников НАН Украины, Киев, Украина E-mail: Yuyu@isp.kiev.ua

(Поступила в Редакцию в окончательном виде 13 января 2010 г.)

Исследованы спектры фотолюминесценции и возбуждения люминесценции порошкообразного ZnS, термолегированного MnCl · 4H₂O или MnS, прошедшего серию обработок импульсным магнитным полем с одинаковой максимальной амплитудой индукции магнитного поля ($B_{\rm max} = 0.3$ T), но с разными величинами скорости ее нарастания $\dot{B}(t)$ до максимального значения. Обнаружен эффект нелинейного влияния на спектральные характеристики ZnS: Mn воздействия импульсных магнитных полей при разной скорости нарастания B. Обсуждаются процессы, протекающие в материале, которые способны привести к изменению его спектральных характеристик вследствие проявления магнитопластического эффекта, а также влияние параметра $\dot{B}(t)$ магнитного поля на эффективность внешнего воздействия. Показано, что варьирование значения параметра $\dot{B}(t)$ позволяет управлять локализацией дефектов в ближайшем окружении Mn²⁺ в ZnS по окончании обработки материала в магнитном поле. Представлены механизмы, объясняющие причины разного влияния на систему энергетически одинаковых внешних возмущений.

Работа выполнена благодаря финансовой поддержке ООО "Технократ".

1. Введение

Характерной особенностью современного этапа развития физики твердого тела является повышенный интерес к исследованиям объектов пониженной размерности, к которым относятся объекты мезо- и наноразмеров. Конструктивная сложность и многофункциональность, закладываемые в устройства, создаваемые на их базе, выдвигают определенные требования к технологии получения и последующей обработки этих мелкодисперсных материалов. В свою очередь это приводит к пониманию необходимости использовать именно воздействия, к которым применимо понятие "низкие", такие как низкодозовые, низкоэнергетические и т.п. В силу своих величин они оказывают влияние только на отдельные элементы системы, наиболее восприимчивые к этому виду воздействия. Как правило, такие воздействия в условиях термодинамического равновесия не приводят к изменению макросостояния системы, т.е. суммарная величина энергии системы в течение времени воздействия не превышает определенного порога, выше которого поступление энергии при данных условиях изменит макросостояние системы. Поэтому к таким воздействиям можно отнести либо кратковременные воздействия, т.е. ограниченные во времени, либо ограниченные по максимальной величине. Влияние таких воздействий на макросостояние проявляется исключительно в случае наличия в системе элементов в состоянии, которое можно охарактеризовать как неустойчивое или лабильное. Поэтому эффективность влияния "низких" воздействий в первую очередь обусловлена неравновесными условиями протекания процессов передачи энергии внешнего воздействия системе. В свою очередь повышение эффективности "низких" воздействий может позволить не только минимизировать побочные явления при использовании внешних воздействий, но и подойти к решению адресного воздействия на отдельные группы элементов системы.

Экспериментальные результаты, приведенные в работах [1-3], открывают новые возможности в управлении эффективностью воздействия в случае, когда величина воздействия не может превышать некоторого "порогового" значения. Изменение эффективности внешнего воздействия может быть осуществлено только за счет разной степени неравновесности в системе вследствие варьирования временных характеристик этого воздействия при формально одинаковых остальных параметрах. Авторы [1-3] рассматривают с позиции локальнонеравновесной теории процессов переноса [4] процессы теплоемкости и теплопроводности в системе ZnS-CuCl при термолегировании. Однако рассуждения, приведенные в [1,3] для объяснения механизмов, определяющих протекание процессов в системе ZnS: CuCl, носят вероятностный характер. Это связано с высокой сложностью и многостадийностью механизмов термолегирования, с одной стороны, и недостатком экспериментальных данных, отражающих изменение в системе при аналогичных воздействиях на нее потоков энергии различной природы, с другой.

Если внешнее воздействие рассматривать как поток энергии, которую система либо поглощает, либо переизлучает, то в общем виде эффективность воздействия на систему может быть представлена как отношение поглощенной системой энергии внешнего потока к энергии потока: $\Phi = dE_C/dE$ ($0 \le \Phi \le 1$), где Φ — эффективность внешнего воздействия, dE — энергия внешнего

потока, dE_C — энергия, поглощенная системой. Если при этом учесть, что рассматриваемые значения энергии меняются во времени, то коэффициент эффективности можно рассматривать не только с позиции его энергетических характеристик, а и с позиции временны́х характеристик. Тогда становится очевидным, что для одиночного (или импульсного) воздействия, ограниченного сверху по величине, чем меньше время, за которое энергия внешнего воздействия может быть передана системе, тем Φ будет выше.

Целью настоящей работы является выяснение границ применимости приведенных выше рассуждений при анализе процессов, которые протекают под действием "низких" внешних воздействий нетермической природы, а также исследование влияния скорости нарастания индукции магнитного поля (МП) при обработке ZnS: Мп импульсами слабого магнитного поля (СМП) на спектральные характеристики люминесценции ZnS: Мn и анализ процессов, протекающих в ZnS: Мn вследствие такого воздействия.

2. Методика эксперимента

Для исследований были приготовлены два типа образцов ZnS: Mn. Первый тип представляет собой порошкообразный ZnS (ЕТО.035.295 ТУ), легированный MnCl · 4H₂O при $T = 800^{\circ}$ C в течение 180 min. Второй — аналогично легированный MnS. Атомная доля Mn в обоих случаях составляла ~ 1%. После легирования образцы ZnS: Мп размещались внутри соленоида и подвергались воздействию импульсного СМП (50 импульсов) с одинаковой амплитудой индукции (B_{max}) МП, равной 0.3 Т, но с разной скоростью нарастания величины индукции МП до максимального значения при воздействии СМП. Интервал между импульсами составлял 5 s. Индуктивность соленоида определялась с помощью измерителя L, C, R цифрового E7-8. Разная скорость нарастания при одинаковой максимальной величине В достигалась подбором соотношения количества витков в соленоиде и количества конденсаторов в батарее. Внутренний диаметр всех соленоидов составлял 10 mm, высота варьировалась в пределах 30-40 mm. Для накопления заряда использовалась конденсаторная батарея, состоящая из высоковольтных масляных конденсаторов КБГ-П (6 μ F, 3 kV). Основные параметры элементов

Параметры элементов установки для обработки образцов магнитным полем

Количество	<i>C</i> ,	Число	<i>L</i> ,	<i>В</i> ,	t,
конденсаторов	μF	витков	μΗ	mT	ms
14	84	17	3.5	313.8	0.693
12	72	21	4.6	313.0	0.918
11	66	24	5.5	313.3	1.74
10	60	33	8.8	324.7	2.27
9	54	38	11.2	314.4	3.46

установки для каждого типа обработки СМП приведены в таблице.

Спектры фотолюминесцении (ФЛ) и спектры возбуждения люминесценции (СВЛ) были получены на установке СДЛ-2 при T = 300 К. Для возбуждения люминесценции было использовано излучение ксеноновой лампы, прошедшее через монохроматор МДР-12.

3. Экспериментальные результаты и их обсуждение

Спектры ФЛ ZnS: Mn, измеренные до и после воздействия СМП, представлены на рис. 1, *a*, *b* (кривые 1). Обработка СМП ZnS, как легированного MnCl \cdot 4H₂O (рис. 1, a, кривая 1), так и легированного MnS (рис. 1, b, кривая 1), на спектральном виде кривых $\Phi \Pi$ ZnS:Mn никак не отразилась. Спектры ФЛ имеют характерный для ZnS: Mn вид [5] и состоят из одной доминирующей полосы ФЛ с $\lambda_{\text{max}} \approx 581 \,\text{nm}$, а также слабого крыла в коротковолновой области спектра. Коротковолновое крыло спектра ФЛ обусловлено присутствием примеси кислорода и самоактивационной люминесценцией сульфида цинка [6]. Полоса ФЛ с $\lambda_{max} \approx 581 \, \text{nm}$ является сложной и состоит из двух элементарных полос ФЛ с $\lambda_{max} \sim 578$ и 600 nm. Отметим, что в ZnS: Мп реализуются два типа электронных возбуждений и их релаксации: обычный полупроводниковый межзонный механизм и внутрицентровой. Излучение иона марганца возникает при переходе одного из 3*d*-электронов из первого возбужденного состояния ${}^{4}T_{1}({}^{4}G)$ в основное ${}^{6}A_{1}({}^{6}S)$. Величина энергетического зазора между ними является функцией фактора внутрикристаллического поля D_a, который учитывает симметрию внутрикристаллического поля, число ионов, образующих это поле, расстояние между ними, тип и локализацию дефектов и т.д. Полосы $\Phi\Pi$ $\lambda_{max} \sim 578$ и 600 nm связывают с излучением иона Mn^{2+} (полосу с $\lambda_{max} \sim 578 \, nm$ — Mn^{2+} вблизи дислокаций или точечных дефектов, с $\lambda_{\rm max} \sim 600\,{\rm nm}$ — Mn²⁺ в октаэдрических междоузлиях [5]).

СВЛ ZnS: Mn, нормированные на максимум полосы зона-зонного возбуждения, соответствующие максимуму яркости свечения образцов ($\lambda_{\rm max} \sim 581\,{\rm nm}$), измеренные до и после воздействия СМП, при разной скорости нарастания величины В, т.е. с разными величинами $dB/dt = \dot{B}(t)$, представлены на рис. 1 (кривые 2–7). СВЛ ZnS: Mn содержат пять полос с максимумами при $\lambda_{\text{max}} = 343$, 391, 424, 467 и 493 nm. Полоса $\lambda_{max} = 343 \, nm$ соответствует полосе фундаментального возбуждения для ZnS. Полосы $\lambda_{max} = 391, 424, 467$ и 493 nm соответствуют известным из литературы [5,7] элементарным марганцевым полосам СВЛ. Данные полосы СВЛ обусловлены переходами из основного состояния $Mn^{2+6}A_1$ в возбужденные состояния 4T_1 , 4T_2 , ${}^{4}E_{1}, {}^{4}A_{1}$ [7]. Следует отметить, что излучение иона марганца является сенсибилизированным, т.е. энергия возбуждающего света в основном поглощается одними

Рис. 1. Спектры ФЛ ($\lambda_{exc} = 337 \text{ nm}$) и СВЛ (для полосы с $\lambda_{max} = 580 \text{ nm}$) ZnS, легированного MnCl·4H₂O (*a*) и MnS (*b*). *1* — спектр ФЛ (спектральный вид ФЛ не меняется после обработок СМП). Спектры СВЛ, нормированные по максимуму полосы фундаментального возбуждения, до и после их обработки импульсным МП (0.3 T): 2 — до обработки, 3 после обработки в соленоиде с 17 витками, 4 — с 21 витком, 5 — с 24 витками, 6 — с 33 витками, 7 — с 38 витками.

центрами (сенсибилизаторами), роль которых в ZnS: Mn могут выполнять близко расположенные дефекты, Mn_{Zn}, примеси Cl, O и т.д., и затем уже передается излучающему иону марганца (активатору) [7,8]. Этим объясняются очень существенные различия СВЛ ZnS, легированного MnCl · 4H₂O или MnS, или практически полном совпадении спектрального вида ФЛ этих же материалов. Наличие Cl в матрице ZnS очень сильно влияет на резонансные каналы передачи энергии Mn²⁺, так как хлор активно участвует в создании центров сенсибилизации, что хорошо видно при сравнении СВЛ (рис. 1, *a*, *b*, кривые 2-7). Присутствие Cl приводит к размытию края зоны ZnS вследствие появления набора мелких уровней, расположенных у дна зоны проводимости, обусловленных примесью хлора, а также к увеличению полуширины марганцевых полос. Особенно ярко это проявляется для полос с $\lambda_{max} = 391$ и 424 nm (рис. 1, *a*, кривые 2-7), разрешение которых как индивидуальных полос на спектре СВЛ резко упало. Уширение полос СВЛ объясняется уменьшением степени совпадения положения уровней энергии активатора с возбужденным и основным уровнями сенсибилизатора, что является необходимым условием для резонансной передачи энергии [8], т.е. изменением величины перекрытия спектра излучения сенсибилизатора спектром поглощения активатора.

Несмотря на такое сильное влияние примеси Cl в ZnS: Mn на вид его СВЛ, энергетическое положение всех полос СВЛ практически одинаково для обоих случаев легирования. Это касается также ZnS: Mn, прошедшего обработку СМП: энергетическое положение ни одной из полос СВЛ ZnS: Mn не изменилось после обработки СМП (рис. 1, a, b). Неизменное положение максимумов полос СВЛ свидетельствует о близких величинах D_q для Mn²⁺ в ZnS во всех перечисленных выше случаях. Основное влияние времени выхода на максимальную величину (0.3 Т) индукции МП при обработке СМП ZnS: Mn на спектральные характеристики его люминесценции проявляется в изменении относительной интенсивности полос СВЛ (кривые 2-7 на рис. 1, *a*, *b*). На рис. 2 приведены зависимости изменения интенсивности марганцевых полос СВЛ относительно их интенсивности до обработки СМП. Как видно из рис. 2, поведение всех марганцевых полос СВЛ ZnS: Мn для каждого случая легирования — MnCl · 4H₂O и MnS после обработки СМП практически синхронно, за исключением полосы с $\lambda_{max} = 385 \, \text{nm}$ ZnS, легированного MnCl · 4H₂O (кривая 3), перекрытие которой с полосой, соответствующей межзонному поглощению, очень велико (рис. 1, a), что, вероятно, и объясняет такое ее поведение.

Рис. 2. Отношение интенсивности полос СВЛ к их интенсивности до обработки СМП как функция времени, в течение которого *B* при обработке импульсным СМП достигает максимального значения $B_{\text{max}} = 0.3$ Т (стрелками указано количество витков соленоида, в котором проведена обработка). ZnS: (MnCl·4H₂O): полоса с $\lambda_{\text{max}} = 467$ (*1*), 493 (*2*) и 385 nm (*3*). ZnS: (MnS): $\lambda_{\text{max}} = 467$ (*4*), 493 (*5*), 391 (*6*) и 423 nm (*7*).

Анализ зависимости (рис. 2) показывает, что для ZnS: (MnS) обработка СМП наиболее эффективна при значениях $t = 6.93 \cdot 10^{-4}$ и $9.18 \cdot 10^{-4}$ s, а для $ZnS:(MnCl \cdot 4H_2O)$ — при значениях t = $= 6.93 \cdot 10^{-4}$ и 34.6 $\cdot 10^{-4}$ s. Однако воздействие СМП с $t = 6.93 \cdot 10^{-4}$ и 34.6 $\cdot 10^{-4}$ s на ZnS: (MnCl $\cdot 4H_2O$) приводит к одинаковым изменениям I/I₀ по абсолютной величине (рис. 2, кривые 1-3), но противоположным по знаку для этих случаев обработки. Эффективность каналов резонансной передачи энергии при возбуждении люминесценции Mn²⁺ относительно межзонного возбуждения для $t = 6.93 \cdot 10^{-4}$ s уменьшилась в ~ 1.4 раза, а для $t = 34.6 \cdot 10^{-4}$ s увеличилась в ~ 1.4 раза по сравнению с их значением в материале, не прошедшем обработку (рис. 2, кривые 1-3). Аналогично поведение каналов резонансной передачи энергии и для ZnS:(MnS) при его обработке СМП, когда $t = 6.93 \cdot 10^{-4}$ и $9.18 \cdot 10^{-4}$ s. Относительная эффективность резонансных каналов для $t = 6.93 \cdot 10^{-4}$ уменьшилась в 1.25–1.4 раза, а для $t = 9.18 \cdot 10^{-4}$ s увеличилась в 1.2 раза по сравнению с их значением до обработки (рис. 2, кривые 4-7).

Зависимости, приведенные на рис. 2, с одной стороны, иллюстрируют изменения эффективности резонансных каналов, участвующих в возбуждении люминесценции Mn²⁺, относительно эффективности зоназонного канала после различных обработок СМП. С другой стороны, данные зависимости отражают изменение эффективности воздействия СМП при разных значениях $\dot{B}(t)$ на дефектную структуру ZnS:Mn, т.е. показывают, как меняются в зависимости от $\dot{B}(t)$ подвижность и последующая локализация дефектов в материале вследствие проявления магнитопластического эффекта (МПЭ) [9,10]. Как уже отмечалось выше, изменение эффективности каналов возбуждения люминесценции Mn²⁺ может произойти вследствие изменения как симметрии окружения Mn^{2+} , так и центров сенсибилизации.

Так как в областях, окружающих дислокации, как правило, локализованы атмосферы Коттрелла, где концентрация центров сенсибилизации повышена [11], наиболее эффективно возбуждаются марганцевые центры, которые располагаются вблизи дислокаций. Срыв дислокаций под действием СМП (они в ZnS обладают отрицательным электрическим зарядом [12]) может привести как к повышению, так и к падению эффективности резонансного канала передачи энергии в зависимости от типа дефектов и примеси, участвующих в резонансной передаче, и величины смещения дислокаций. Вероятно, воздействие СМП с большими временами выхода на B_{max}, т.е. минимальной плотностью потока энергии МП в единицу времени [13] при обработке СМП, приводит к незначительному сдвигу дислокаций, и наоборот. Тогда с уменьшением времени выхода на B_{max} , т.е. с ростом плотности потока энергии МП, пробег дислокаций увеличивается. А согласно [11], при дальнейшем удалении дислокаций от своих атмосфер

Коттрелла ситуация возвращается к исходной, т.е. интенсивность ФЛ ZnS: Мп возвращается. Полный выход дислокаций на поверхность приводит к новому распределению механических напряжений в материале, что опять сказывается на интенсивности ФЛ ZnS: Mn. Авторы [11] показали, в деформированных кристаллах ZnS после ухода дислокаций интенсивность ФЛ уменьшается, что хорошо согласуется с данными (при $t \rightarrow t_{\min}$), приведенными на рис. 2. Здесь необходимо уточнить, что в [11] возбуждение ФЛ осуществлялось $\lambda_{\text{exc}} = 365 \,\text{nm}$, что соответствует одному из минимумов СВЛ ZnS: Mn, тогда как данные на рис. 2 отражают изменения люминесценции при возбуждении в областях максимумов СВЛ ZnS: Mn. При некотором обобщении процессы, протекающие в частице ZnS: Мп под действием СМП при разных значениях $\dot{B}(t)$, можно разбить на три этапа, которые хорошо проявляются на зависимостях, представленных на рис. 2. Первый — это срыв и незначительное смещение дефектов структуры, второй миграция дефектов, приводящая к изменению распределения объемного заряда и механических напряжений в частице, третий — выход дислокаций на поверхность частицы с последующим изменением поля механических напряжений и новым видом распределения объемного заряда в ZnS: Mn.

Все приведенные выше рассуждения поясняют, как в каждом конкретном случае микроструктурные преобразования в ZnS: Мп под воздействием СМП могут привести к той или иной эффективности каналов возбуждения люминесценции Mn²⁺. Однако для выяснения физических причин, благодаря которым энергетически равные воздействия МП на ZnS: Мп приводят к столь разным результатам, необходим анализ и механизмов, определяющих динамику протекания МПЭ.

При всем многообразии явлений и эффектов, сопутствующих МПЭ, специфика воздействия СМП такова, что она может влиять только на спиновую конверсию и только в определенной радикальной паре, значения параметров которой попадают в очень узкий диапазон [14-19]. Спиновая конверсия под действием СМП реализуется в такой радикальной паре, которая некоторое время находится в возбужденном состоянии. Согласно моделям, представленным в [14-18], время жизни т в этом магниточувствительном состоянии должно попадать в интервал $au_{st} < au < au_{sl}$, где au_{st} — время спиновой конверсии, $\tau_{\rm sl}$ — время спин-решеточной релаксации. Изменение параметров СМП может отразиться только на времени переходов между синглетным (S) и триплетным (T) состояниями, которое отождествляют со средним временем открепления дислокации. По-видимому, разная эффективность воздействия МП при разных скоростях нарастания В является следствием различия значений времен, необходимых для осуществления спиновой конверсии. Другими словами, вероятность спиновой конверсии в радикальной паре во время действия импульсного СМП можно рассматривать как функцию скорости нарастания МП.

Такое поведение является следствием нескольких взаимосвязанных и взаимодополняющих причин. С одной стороны, разная скорость нарастания МП поля приводит к разным величинам биений амплитуд в волновой функции валентных электронов, которые, как показали Даринский и Фёклин, могут возникать в материале [19], либо переходных биений, которые обязательно возникают в магниточувствительной системе при воздействии импульсного МП. Имеющаяся разность фаз между собственными и вынужденными колебаниями, меняясь, приводит к изменению результирующей амплитуды биений, тем самым меняя эффективность воздействия МП. С другой стороны, любая непериодическая сложная функция произвольной формы, зависящей от времени, является совокупностью синусов или косинусов с различными частотами и амплитудами [20]. Если представить импульс МП через его спектральные составляющие, становится ясно, что при изменении скорости нарастания МП меняется вклад гармоник разной частоты, составляющих импульс МП. А это кроме изменений в биениях, вызванных МП, может также привести и к проявлению резонансных эффектов в системе.

Таким образом, из приведенных результатов следует, что изменение эффективности воздействия СМП при изменении $\dot{B}(t)$ на твердое тело может быть объяснено с точки зрения процессов поглощения и переизлучения энергии внешнего потока системой. В этом случае определяющую роль играют характерные времена, за которые реализуются процессы поглощения и переизлучения потока энергии системой с учетом изменения ее состояния во время воздействия. С точки зрения колебательных процессов, возникающих под действием внешней силы, изменение эффективности воздействия МП может быть объяснено появлением в системе биений, а при определенных условиях и значениях $\dot{B}(t)$ — резонансных эффектов.

4. Заключение

Приведенные выше данные показывают, что обработка люминофоров ZnS: Mn СМП с одинаковой амплитудой, но разной скоростью нарастания индукции МП может приводить к изменению эффективности резонансных каналов возбуждения люминесценции Mn²⁺ относительно эффективности зона-зонного канала. Это позволяет заключить, что эффективность воздействия энергетически одинаковых СМП на систему магниточувствительных центров при разных значениях параметра $\dot{B}(t)$, попадающих в определенный интервал τ , разная. Анализ нелинейного влияния обработок СМП с различающимися значениями их параметра $\dot{B}(t)$ на спектральные характеристики ZnS: Мп позволяет считать обнаруженный эффект проявлением наложения на процессы МПЭ явления, обусловленного разной скоростью преобразования различными элементами системы энергии МП в зависимости от параметров его потока.

Список литературы

- Ю.Ю. Бачериков, И.С. Головина, Н.В. Кицюк. ФТТ 48, 10, 1766 (2006).
- [2] Yu.Yu. Bacherikov, I.S. Golovina, N.V. Kitsyuk, M.A. Mukhlyo, V.E. Rodionov, A.A. Stadnik. Functional Mater. 11, 2, 343 (2004).
- [3] Ю.Ю. Бачериков. Тр. 5-й Междунар. науч.-техн. конф. "Актуальные проблемы физики". Баку (2008). С. 203.
- [4] С.Л. Соболев. УФН 161, 3, 5 (1991).
- [5] М.Ф. Булатный, Б.А. Полежаев, Т.А. Прокофьев, И.М. Черненко. ЖПС 67, 2, 208 (2000).
- [6] Н.К. Морозова, В.А. Кузнецов. Сульфид цинка. Получение и оптические свойства. Наука, М. (1985). 200 с.
- [7] В.Ф. Агекян. ФТТ **44**, *11*, 1921 (2002).
- [8] А.М. Гурвич. Введение в физическую химию кристаллофосфоров. Высш. шк., М. (1982). 376 с.
- [9] Ю.И. Головин, Р.Б. Моргунов, А.А. Баскаков, М.В. Бадылевич, С.З. Шмурак. Письма в ЖЭТФ 69, 2, 114 (1999).
- [10] Ю.Ю. Бачериков, Н.В. Кицюк, Т.Е. Константинова, А.С. Дорошкевич. ЖПС 74, 3, 367 (2007).
- [11] С.А. Омельченко, М.Ф. Буланый, О.В. Хмеленко. ФТТ 45, 9, 1608 (2003).
- [12] М. Авен, Д.С. Пренер. Физика и химия соединений А²B⁶ / Пер. под ред. С.А. Медведева. Мир, М. (1970). 624 с.
- [13] Н.А. Умов. Уравнения движения энергии в телах. Типография Ульриха и Шульце, Одесса. (1874). 56 с.
- [14] Ю.И. Головин. ФТТ 46, 5, 769 (2004).
- [15] Т.В. Волошина, М.Н. Левин, М.А. Дронов, Т.В. Кавецкая. Письма в ЖТФ 32, 2, 84 (2006).
- [16] Ю.И. Головин, Р.Б. Моргунов, А.А. Басканов, С.З. Шмурак. ФТТ **41**, *11*, 1944 (1999).
- [17] М.Н. Левин, Г.В. Семенова, Т.П. Сушкова, В.В. Постников, Б.Л. Агапов. ФТТ **45**, *4*, 609 (2003).
- [18] В.И. Альшиц, Е.В. Даринская, О.Л. Казакова. ФТТ **40**, *1*, 81 (1998).
- [19] Б.М. Даринский, В.Н. Фёклин. ФТТ 48, 9, 1614 (2006).
- [20] Л. Рабинер, Б. Гоулд. Теория и применение цифровой обработки сигналов / Пер. под ред. Ю.Н. Александрова. Мир, М. (1978). 848 с.