Полупроводниковый наноцилиндрический слой в сильном электрическом поле: спектр носителей и внутризонные переходы

© В.А. Арутюнян

Гюмрийский филиал Государственного инженерного университета Армении, Гюмри, Армения E-mail: volhar@mail.ru

(Поступила в Редакцию 9 июля 2009 г. В окончательной редакции 11 ноября 2009 г.)

> В приближении изотропной эффективной массы рассмотрены одноэлектронные состояния в квантованном цилиндрическом слое при наличии сильного однородного электрического поля. Получен явный вид энергетического спектра и огибающих волновых функций носителей заряда в слое. Показано, что сильное внешнее электрическое поле приводит к дополнительной локализации носителей по их угловому движению. Получены соответствующие правила отбора и рассчитана полоса поглощения внутризонных-межподзонных оптических переходов в слое.

1. Введение

Наряду со многими низкоразмерными полупроводниками нанотрубки в настоящее время являются одним из наиболее актуальных объектов исследования в физике низкоразмерных систем, что обусловлено перспективностью их приборного применения [1]. Большая часть работ, касающихся названных трубчатых структур, посвящена углеродным нанотрубкам (см., например, работы [2–5] и цитированную в них литературу). Однако последние годы отмечены успехами также и в технологии получения полупроводниковых цилиндрических нанотрубок [6-12]. Поведение электронной подсистемы в полупроводниковых нанотрубках по сравнению с карбоновыми нанотрубками имеет ряд существенных особенностей и отличий, обусловленных именно спецификой материала. В связи с этим определенный интерес представляет исследование физических свойств отдельно взятого полупроводникового наноцилиндрического слоя, который может иметь прикладное применение как в чистом виде, так и в качесте составного компонента более сложной композиции [13,14]. Названные структуры интересны прежде всего тем, что комбинируют в себе ряд физических особенностей как квантовой нити, так и квантовой пленки. С другой стороны, известно, что внешние статические поля, в частности электрическое, оказывают существенное модулирующее воздействие на ряд физических характеристик образца.

В настоящей работе теоретически рассчитан энергетический спектр носителей заряда в квантованном цилиндрическом слое, помещенном в сильное однородное электростатическое поле, а также рассмотрена специфика электрооптического поглощения при дипольных внутризонных—межподзонных переходах в подобном слое.

2. Общие допущения

Рассматриваемую систему представим как композицию кор/слой/среда и предполагаем бесконечной вдоль оси симметрии z.

При описании поперечного движения носителей в плоскости (r, φ) , — которое в дальнейшем нас в основном и будет интересовать, так как внешнее поле выбрано действующим именно в этой плоскости, соотношения между параметрами кора, собственно слоя и среды предполагаем такими, что в радиальном направлении вдоль координаты r в отсутствие внешнего поля слой с достаточной точностью можно аппроксимировать бесконечно глубокой потенциальной ямой, "свернутой в трубку",

$$U(r) = \begin{cases} 0, & R_1 < r < R_2, \\ \infty, & r \le R_1, & r \ge R_2, \end{cases}$$
(1)

где R₁, R₂ — соответственно внутренний и внешний радиусы слоя. Выбор модели квантовой ямы для слоя в виде (1) будет физически адекватным в тех случаях, когда кор и среда изготовлены из одного и того же материала и между энергетическими характеристиками контактирующих материалов выполняются следующие соотношения: материал слоя по сравнению с материалом кора (среды) является более узкозонным, их запрещенные зоны перекрываются, а величина разрыва зонной энергии, отсчитанной от вакуумного уровня, для контактирующих материалов на интерфейсе много больше энергии размерного квантования носителей заряда в слое. Кроме того, предполагается, что толщина слоя такова, что кинетическая энергия, обусловленная размерным квантованием, много больше энергии кулоновского взаимодействия, и связывания электрона и дырки в экситон в пределах слоя не происходит. Таким

(8)

образом, имеет место условие

$$L \ll a_L, \tag{2}$$

где $L = R_2 - R_1$ — толщина слоя, a_L — боровский радиус объемного экситона в материале слоя. В плане совокупного выполнения приведенных условий типичными можно считать, например, структуры CdS/HgS/CdS, CdSe/ZnS/CdSe, CdS/PbS/CdS [15–17].

Одновременно предполагаем, что толщина слоя много меньше его радиуса:

$$L \ll R_1. \tag{3}$$

Это условие с технической точки зрения будет наиболее приближено к физической ситуации, когда система проявляет одновременно свойства как квантовой нити, так и квантовой пленки. С энергетической точки зрения условие (3) равнозначно условию малости энергии вращения частицы в слое по сравнению с ее энергией размерного квантования в радиальном направлении. Из соотношения неопределенностей нетрудно получить, что между эффективными периодами радиального (T_{conf}) и вращательного (T_{rot}) движений при этом будет иметь место соотношение

$$\frac{T_{\rm conf}}{T_{\rm rot}} \sim \frac{L^2}{R_1^2} \ll 1. \tag{4}$$

Таким образом, вращательное движение частицы в слое является медленным по сравнению с ее радиальным движением, что в дальнейшем дает нам возможность воспользоваться адиабатическим приближением для решения соответствующего двумерного уравнения Шредингера.

2.1. Одноэлектронные состояния в слое в отсутствие поля. Рассмотрение проведем для простых зон с параболическим законом дисперсии. Тогда в случае рассматриваемой трубчатой системы со свободным движением носителей вдоль оси симметрии z в цилиндрических координатах (r, φ, z) имеем следующее уравнение Шредингера [18]:

$$-\frac{\hbar^2}{2\mu} \left[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2} \right] \psi(r, \varphi, z)$$
$$= E_{\text{tot}} \psi(r, \varphi, z), \quad (5)$$

где μ — изотропная эффективная масса, E_{tot} — полная энергия движения частицы в слое. Огибающая волновая функция вдоль оси z будет представлять собой плоскую волну $w(z) \sim \exp(ik_z z)$ с энергией $E_{long} \equiv E(p_z) = p_z^2/2\mu = \hbar^2 k_z^2/2\mu$, где p_z — составляющая квазиимпульса вдоль оси симметрии [18].

Выделяя далее в выражении (5) часть, соответствующую быстрому (радиальному) движению, для огибающей радиальной волновой функции $\phi(r)$, приходим к следующему уравнению:

$$\frac{d^2\phi}{dr^2} + \frac{1}{r}\frac{d\phi}{dr} + \frac{2\mu}{\hbar^2}E_{\rm conf}\phi = 0, \quad \left(\int_{R_1}^{R_2} |\phi(r)|^2 r dr = 1\right)$$
(6)

с граничными условиями

$$\phi(r = R_1) = \phi(r = R_2) = 0. \tag{7}$$

Решением этого уравнения является линейная комбинация функций Бесселя $J_0(\alpha x)$ и Неймана $N_0(\alpha x)$ нулевого порядка [19]

 $\phi(x) = C_1 J_0(\alpha x) + C_2 N_0(\alpha x),$

$$x = \frac{r}{L}, \quad \alpha^2 = \frac{2\mu L^2}{\hbar^2} E_{\text{conf}},$$

 $E_{\rm conf}$ — энергия радиального движения, C_1, C_2 — нормировочные константы. Учитывая теперь условие (3) и воспользовавшись асимптотическим разложением функций из (8) для бо́льших значений аргумента [19], вместо (8) можем записать

$$\phi(x) \cong \frac{1}{\sqrt{x}} \left[C_1 \cos\left(\alpha x - \frac{\pi}{4}\right) + C_2 \sin\left(\alpha x - \frac{\pi}{4}\right) \right].$$
(9)

Учет граничных условий (7) приводит для собственных функций и собственных значений уравнения (6) к следующим результатам:

$$\phi(r) \equiv \phi_n(r) = \sqrt{\frac{2}{L}} \frac{\sin \frac{\pi n}{L} (r - R_1)}{\sqrt{r}}, \quad (n = 1, 2, ...),$$
(10)

$$E_{\rm conf} \equiv E_n = \frac{\hbar^2 \alpha_n^2}{2\mu L^2} = \frac{\pi^2 \hbar^2 n^2}{2\mu L^2}.$$
 (11)

Усредняя теперь величину r^{-2} по состояниям (10) для "медленной" части движения частицы (вращения), приходим к уравнению двумерного ротатора

$$-\frac{\hbar^2}{2\mu R_n^2} \frac{d^2 f(\varphi)}{d\varphi^2} = E_{\text{rot}} f(\varphi), \quad E_{\text{rot}} = \frac{\hbar^2 m^2}{2\mu R_n^2},$$
$$f_m(\varphi) = \frac{e^{i|m|\varphi}}{\sqrt{2\pi}} \quad (m = \pm 1, \pm 2, \ldots), \tag{12}$$

для эффективного радиуса вращения которого R_n с учетом условия (3) получаем

$$R_n^{-2} \cong R_1^{-2} \left[1 - \frac{L}{R_1} + \frac{L^2}{R_1^2} \left(1 - \frac{3}{2\pi^2 n^2} \right) \right].$$
(13)

Окончательно для полной волновой функции и энергетического спектра поперечного движения частицы в слое "большого" радиуса можем записать

$$(r, \varphi) = \psi_{n,m}(r, \varphi) = \phi_n(r) f_m(\varphi)$$
$$= \sqrt{\frac{2}{L}} \frac{\sin \frac{\pi n}{L} (r - R_1)}{\sqrt{r}} \frac{e^{i|m|\varphi}}{\sqrt{2\pi}}, \qquad (14)$$

Физика твердого тела, 2010, том 52, вып. 8

$$E_{\rm ir} = E_{\rm conf} + E_{\rm rot} \equiv E_{n,m} = \frac{\pi^2 \hbar^2 n^2}{2\mu L^2} + \frac{\hbar^2 m^2}{2\mu R_1^2} \times \left[1 - \frac{L}{R_1} + \frac{L^2}{R_1^2} \left(1 - \frac{3}{2\pi^2 n^2}\right)\right] \equiv \varepsilon_1 n^2 + \frac{\hbar^2 m^2}{2\mu R_n^2}.$$
 (15)

Для полной энергии движения частицы в слое соответственно будем иметь

$$E_{
m rot} = rac{\pi^2 \hbar^2 n^2}{2 \mu L^2} + rac{\hbar^2 m^2}{2 \mu R_n^2} + rac{p_z^2}{2 \mu}.$$

2.2. Электростатическое поле в слое. Предположим, что внешнее однородное поле Е направлено вдоль оси x: $\mathbf{E} = \mathbf{E}(E, 0, 0)$. В рассматриваемом случае, когда диэлектрические постоянные кора, слоя и среды есть соответственно ε_1 , ε_2 , ε_1 , учет искажения приложенного внешнего поля вследствие поляризации среды, окружающей носитель с зарядом q, для потенциальной энергии частицы в пределах слоя [20] приводят к следующему результату:

$$V(r,\varphi) = q\left(Br + \frac{C}{r}\right)\cos\varphi \equiv V(r)F\cos\varphi, \qquad (16)$$

где постоянные В и С следующие:

$$B = F \frac{2(\varepsilon_{2,1}+1)R_2^2}{(\varepsilon_{2,1}+1)^2 R_2^2 - (\varepsilon_{2,1}-1)^2 R_1^2} \equiv FB_0, \qquad (17)$$

$$C = F \frac{2(\varepsilon_{2,1} - 1)R_1^2 R_2^2}{(\varepsilon_{2,1} + 1)^2 R_2^2 - (\varepsilon_{2,1} - 1)^2 R_1^2} \equiv FC_0, \qquad (18)$$

a $\varepsilon_{2,1} = \varepsilon_2/\varepsilon_1$, F = qE.

С учетом рассмотренных выше условий адиабатичности для радиального движения функцию V(r) в выражении (16) в дальнейшем можно заменить ее средним значением

$$\langle V(r) \rangle = \left\langle B_0 r + \frac{C_0}{r} \right\rangle$$
$$\cong B_0 R_1 \left(1 + \frac{L}{2R_1} \right) + \frac{C_0}{L} \ln \frac{R_2}{R_1} \equiv V_0.$$
(19)

3. Одноэлектронные состояния в слое в присутствии внешнего поля

При наличии внешнего однородного поля с учетом результатов разделов 1, 2 для движения частицы по угловой переменной теперь будем иметь следующее уравнение:

$$\frac{d^2 u(\eta)}{d\eta^2} + \frac{8\mu R_n^2}{\hbar^2} E_{\text{ang}} u(\eta) + \frac{8\mu R_n^2 V_0 F}{\hbar^2} u(\eta) \cos 2\eta = 0 \left(\eta = \frac{\varphi - \pi}{2}\right), \quad (20)$$

которое представляет собой уравнение Матье. В предельном случае сильных полей, когда создаваемая внешним полем потенциальная яма очень глубокая и соответственно имеет место соотношение

$$\frac{V_0 F}{E_{\rm ang}} \gg 1, \tag{21}$$

функцию $\cos 2\eta$ можно представить в виде $\cos 2\eta \cong 1 - 2\eta^2$. После чего для движения по угловой переменной приходим к уравнению Шредингера осцилляторного типа

$$\frac{d^2u(\eta)}{d\eta^2} + \lambda^2 u(\eta) - \beta_n^2 \eta^2 u(\eta) = 0, \qquad (22)$$

где

$$\lambda^2 = \frac{8\mu R_n^2}{\hbar^2} (E_{ang} + V_0 F), \quad \beta_n^2 = \frac{16\mu R_n^2 V_0 F}{\hbar^2}$$

Решения этого уравнения хорошо известны [19], и для энергии и волновых функций движения частицы по угловой переменной соответственно получаем

$$E_{\text{ang}} \equiv E_k(F) = \sqrt{\frac{\hbar^2 V_0 F}{\mu R_n^2}} \left(k + \frac{1}{2}\right) - V_0 F$$
$$\equiv \hbar \Omega_n \left(k + \frac{1}{2}\right) - V_0 F, \qquad (23)$$

$$u_k(\eta) = \left(\frac{1}{2^k} \frac{1}{k!} \sqrt{\frac{\beta_n}{\pi}}\right)^{1/2} \cdot H_k\left(\sqrt{\beta_n}\eta\right) \exp\left(-\frac{\beta_n\eta^2}{2}\right), \quad (24)$$

где $H_k(x)$ — полиномы Эрмита, k = 0, 1, 2, ...

4. Обсуждение результатов

Как видим, если имеет место соотношение (21), т.е. если энергия, получаемая носителем заряда со стороны внешнего поля, оказывается много больше энергии орбитального движения в слое, то как характер движения, так и соответственно энергетический спектр частицы по угловой переменной меняются. Сильное внешнее поле создает новую глубокую потенциальную яму, вследствие чего наряду с размерным квантованием в радиальном направлении в слое происходит дополнительная локализация носителей заряда также и по их угловому движению. Вместо вращения по окружности слоя (12)-(15) частица в своем движении по угловой координате оказывается теперь локализованной (22)-(24), т.е. под действием сильного внешнего поля она будет совершать колебания в узком угловом конусе азимутальной переменной $\eta(\phi)$. Физически это аналогично известному случаю, когда с увеличением силы тяжести вращение эксцентрического колеса переходит в колебания.

Из решения уравнения (22) нетрудно видеть, что конусы локализации разноименных зарядов будут находиться на противоположных концах диаметра слоя, направленного вдоль внешнего однородного поля. Таким образом, в данном случае внешнее поле производит в слое пространственное разделение электроннодырочной пары.

Если размеры системы сделать аномально малыми также и вдоль оси симметрии z, т.е. если слой трансформировать в квантовое кольцо с прямоугольным сечением, то при наличии сильного внешнего поля в этом кольце будем иметь своеобразный диполь, заряды которого совершают колебания по направлениям вдоль поля и перпендикулярно ему.

При высоких уровнях возбуждения, когда начинают проявляться также и коллективные свойства электронно-дырочной подсистемы, под влиянием сильного поля эта подсистема фактически разделится в слое на две пространственно разделенные "автономные" квазиодномерные Ферми-системы — электронную и дырочную. В этом случае в слое следует ожидать одновременного проявления ряда специфических явлений, характерных для 1D-электронного и дырочного газов (см соответственно [21,22]).

Подробное исследование статистических свойств названных квазиодномерных ансамблей является предметом отдельного рассмотрения. А здесь в качестве одного из примеров применения развитой выше теории рассмотрим внутризонные-межподзонные оптические переходы в слое при наличии этого поля. Рассмотрение проведем для прямых переходов между различными уровнями состояний с дискретной энергией одной и той же зоны.

Предположим, что падающая световая волна

$$\mathbf{A}(\mathbf{r},t) = \mathbf{e}A_0 \exp i(\omega t - \mathbf{q}\mathbf{r}) + \text{c.c.}$$

(здесь с.с. означает комплексное сопряжение) с амплитудой A_0 , частотой ω , волновым вектором **q** и единичным вектором поляризации **e** направлена вдоль оси *y* и поляризована линейно вдоль оси *x*:

$$\mathbf{q} = \mathbf{q}(0, q, 0), \quad \mathbf{e} = \mathbf{e}(1, 0, 0).$$

Соответствующее возмущение, связанное со слабой волной, представим, как обычно [23], в виде

$$A = \frac{i\hbar|e|}{m_0 c} \,(\mathbf{AP}),\tag{25}$$

где **Р** — трехмерный оператор импульса, m_0 — масса свободного электрона, e — его заряд, c — скорость света в вакууме. Так как энергетический спектр поперечного движения частицы $E_{\rm tr} = E_{\rm conf} + E_{\rm ang}$ является суммой выражений (11) и (23), т.е. представляет собой субструктуру, ясно, что в рассматриваемом случае вклад во внутризонное–межуровневое поглощение будут вносить как переходы между состояниями одной и той же энергетической субструктуры, так и переходы между состояния, описываемые радиальным числом $n = 1, 2, \ldots$, называть

пленочными, а состояния, описываемые квантовым числом k = 0, 1, 2, ... из (23)–(24), — осцилляторными, то каждому пленочному уровню с заданным n одномерной подзоны $E(p_z) = p_z^2/2\mu$ будет "сопутствовать" еще и осцилляторная серия с k = 0, 1, 2, ... При выбранных геометрии образца и поляризации падающего света движение вдоль оси z вклада в матричный элемент не дает [18,23], и для матричного элемента $M_{f,i}$ переходов между начальным $|i\rangle \equiv |n_i, k_i\rangle$ и конечным $|f\rangle \equiv |n_f, k_f\rangle$ состояниями одной и той же одномерной подзоны в слое в общем виде можем записать

$$M_{f,i} \equiv M(n_i, n_f; k_f, k_i)$$

= $\int \phi_{n_f}(r) u_{k_f}(\varphi) A \phi_{n_i}(r) u_{k_i}(\varphi) r dr d\varphi.$ (26)

Переходя теперь в (25) к цилиндрическим координатам и ограничиваясь в (26) дипольным приближением, получаем следующую картину внутризонного поглощения в слое.

а) Переходы $|n_i = n, k_i = k \rangle \rightarrow |n_f = n, k_f \rangle$, т.е. переходы между различными осцилляторными состояниями одного и того же пленочного уровня,

$$\left| M(n,n;k_i=k,k_f) \right|^2 = \left| i\hbar \frac{|e|A_0}{m_0 c} \frac{1}{2L} \ln \frac{R_2}{R_1} \right|^2 \frac{k!}{(k+2j)!} \times \left(\frac{2}{\beta_n} \right)^{2j} \exp\left(-\frac{2}{\beta_n} \right) \left| L_k^{2j} \left(\frac{2}{\beta_n} \right) \right|^2, \quad (27)$$

где $L_k^2(t)$ — обобщенные полиномы Лагерра. При вычислении интеграла (26) получаем правила отбора $|k_f - k_i| = 2, 4, 6, \ldots$, так что в (27) $j = 1, 2, 3 \ldots$

Учитывая, что при рассматриваемых переходах составляющая квазиимпульса p_z сохраняется $(p_{zi} = p_{zf})$, для пороговой частоты $\omega_{n,n}$ будем иметь

$$\hbar\omega_{n,n} = \hbar\Omega_n(k_f - k_i). \tag{28}$$

b) Переходы $|n_i, k_i \equiv k \rangle \rightarrow |n_f, k_f \rangle$, т.е. переходы, когда различны как пленочные, так и осцилляторные начальные и конечные состояния.

Для матричного элемента теперь получаем

$$|M(n_f, n_i; k_i = k, k_f)|^2 = \left| i\hbar \frac{|e|A_0}{m_0 c} \frac{8}{2L} \frac{n_f n_i}{n_f^2 - n_i^2} \left(1 - \frac{L^2}{\pi^2 R_1^2} \right) \right|^2$$

 $\times \frac{k!}{(k+2j)!} \left(\frac{2}{\beta_n} \right)^{2j} \exp\left(-\frac{2}{\beta_n} \right) \left| L_k^{2j} \left(\frac{2}{\beta_n} \right) \right|^2,$ (29)
 $|k_f - k_i| = 0, 2, 4, \dots, \quad j = 0, 1, 2, \dots,$
 $n_f \pm n_i = 2l + 1, \quad l = 0, 1, 2, \dots.$

И соответственно для пороговой частоты $\omega_{f,i}$

$$\hbar\omega_{f,i} = \frac{\pi^2 \hbar^2 (n_f^2 - n_i^2)}{2\mu L^2} + \hbar\Omega_{n_f} \left(k_f + \frac{1}{2}\right) - \hbar\Omega_{n_i} \left(k_i + \frac{1}{2}\right).$$
(30)

Физика твердого тела, 2010, том 52, вып. 8

Отметим, что в рассмотренном приближении простых невырожденных зон с параболическим законом дисперсии в силу сохранения величины p_z разность между энергиями $(E_{tot})_i$ начального $|n_i, k_i, p_{zi}\rangle$ и $(E_{tot})_f$ конечного $|n_f, k_f, p_{zf}\rangle$ состояний не будет зависеть от непрерывного ряда значений p_z и соответствующая энергетическая плотность состояний будет иметь δ -образное поведение. Соответственно рассматриваемые межзонные переходы будут иметь резонансный характер.

На рис. 1–3 представлены графики зависимости интенсивности переходов (матричного элемента (26)) от напряженности внешнего поля при диагональных (рис. 1) и недиагональных (рис. 2 — для переходов $k_f - k_i = 2$, рис. 3 — для переходов $k_f - k_i = 4$) по осцилляторному числу внутризонных-межподзонных переходов. На графиках построена величина

$$I_{k_f,k_i}(\beta) = \frac{k!}{(k+2j)!} \left(\frac{2}{\beta}\right)^{2j} \exp\left(-\frac{2}{\beta}\right) \left|L_k^{2j}\left(\frac{2}{\beta}\right)\right|^2$$

Как видим, зависимость интенсивности переходов от внешнего поля в этих случаях существенно различна.

Рис. 1. График функции $I_{k_f,k_i}(\beta)$ для диагональных $(k_f = k_i \equiv k; j = 0)$ переходов. Кривые описывают переходы с k = 0 (1), 1 (2), 2 (3).

Рис. 2. График функции $I_{k_f,k_i}(\beta)$ для недиагональных переходов с правилами отбора $\Delta k = 2$ ($k_i \equiv k; j = 1$). Обозначение кривых то же, что и на рис. 1.

Рис. 3. График функции $I_{k_j,k_i}(\beta)$ для недиагональных переходов с правилами отбора $\Delta k = 4$ ($k_i \equiv k; j = 2$). Обозначение кривых то же, что и на рис. 1.

При диагональных переходах ($\Delta k = 0$) с ростом внешнего поля наблюдается рост интенсивности поглощения с последующим "насыщением". Причем с ростом осцилляторного квантового числа интенсивность поглощения уменьшается. В случае недиагональных переходов интенсивность поглощения с ростом поля уменьшается. По своей абсолютной величине интенсивность сильно зависит также от величины $\Delta k = k_f - k_i$. Так, при переходах с правилами отбора $\Delta k = 4$ интенсивности перехода с того же осцилляторного уровня с правилами отбора $\Delta k = 2$.

Наибольшей по величине интенсивностью в плане зависимости от внешнего поля во всем спектре поглощения будут характеризоваться переходы $|n_i, k_i = 0\rangle \rightarrow |n_f, k_f = 0\rangle$.

Список литературы

- [1] M. Law, J. Goldberger, P. Yang. Ann. Rev. Mater. Res. **34**, 83 (2004).
- [2] S. Iijima. Nature **354**, 56 (1991).
- [3] T. Ando. Semicond. Sci. Technol. 15, R 13 (2000).
- [4] J. Appenzeller, J. Knoch, M. Radosavljevit, Ph. Avouris. Phys. Rev. Lett. 92, 226 802 (2004).
- [5] Y.D. Sau, M.L. Cohen. Phys. Rev. B 78, 115436 (2008).
- [6] В.М. Осадчий, В.Я. Принц. Письма в ЖЭТФ 72, 451 (1998); V.Ya. Prinz, V.A. Seleznew, А.К. Gutakovsky. The physics of semiconductors. World Scientific, Singapore(1999).
- [7] V.Ya. Prinz, V.A. Seleznev, A.K. Gutakovskiy, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova. Physica E 6, 828 (2000).
- [8] V.Ya. Prinz. Microelectron. Eng. 69, 466 (2003).
- [9] Y.M. Lu, H.W. Liang, D.Z. Shen, Z.Z. Zhang, J.Y. Zhang, D.X. Zhao, Y.C. Liu, X.W. Fan. J. Lumin. 119–120, 228 (2006).
- [10] V.Ya. Prinz. Physica E 24, 54 (2004); A.B. Vorob'ev, V.Ya. Prinz, Yu.S. Yukecheva, A.I. Toropov. Photonics Spectra 23, 171 (2004).
- [11] А.И. Ведерников, А.В. Чаплик. ФТП 38, 1358 (2004).
- [12] A.K. Nahapatra. J. Nanopart. Res. 11, 467 (2009).

- [13] Н.В. Ткач, И.В. Пронишин, А.М. Маханец. ФТТ 40, 557 (1998).
- [14] Н.В. Ткач, В.А. Головацкий. ФТТ 43, 350 (2001).
- [15] V.A. Harutyunyan. Physica E 39, 37 (2007).
- [16] J.W. Haus, H.S. Zhou, I. Honma, H. Komiyama. Phys. Rev. B 47, 1359 (1993).
- [17] D. Schooss, A. Mews, A. Eychmüller, H. Weller. Phys. Rev. B 49, 17072 (1994).
- [18] P. Harrison. Quantum wells, wires and dots. Wiley, N.Y. (2000); G. Bastard. Wave mechanics applied to semiconductor heterostructures. Les Editons de Physique, Les Ulis (1998).
- [19] Справочник по специальным функциям / Под ред. М. Абрамовица, И. Стигана. Наука, М. (1979).
- [20] В. Смайт. Электростатика и электродинамика. ИЛ, М. (1954).
- [21] I. Barke, R. Bennewitz, J.N. Crain, S.C. Erwin, A. Kirakosian, J.L. McChesney, F.J. Himpsel. Solid State Commun. 142, 617 (2007).
- [22] W. Lu, J. Xiang, B.P. Timko, Y. Wu, C.M. Lieber. Proc. Natl. Acad. Sci. USA **102**, 10 046 (2005).
- [23] H. Haug, S.W. Koch. Quantum theory of the optical and electronic properties of semiconductors. 3rd ed. World Scientific, Singapore (1994); O. Stier. Electronic and optical properties of quantum dots and wires. Wissenschaft & Technik Verlag, Berlin (2001).