Влияние гидростатического сжатия на индуцированный примесью индия сверхпроводящий переход в Pb_{0.3}Sn_{0.7}Te

© Г.О. Андрианов¹, С.А. Немов², Р.В. Парфеньев¹, Д.В. Шамшур¹, А.В. Черняев¹

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
² Санкт-Петербургский государственный политехнический университет, Санкт-Петербург, Россия
E-mail: d.shamshur@mail.ioffe.ru.

(Поступила в Редакцию 16 декабря 2009 г.)

Представлены результаты изучения низкотемпературной проводимости и параметров сверхпроводящего состояния — критической температуры T_c и второго критического магнитного поля H_{c2} — в полупроводниковом твердом растворе (Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te в условиях гидростатического сжатия $P \le 9$ kbar при T = 4.2 K. Данный материал выбран для исследования, поскольку ранее в нем наблюдался переход в сверхпроводящее состояние при $T_c \sim 2.3$ K, вблизи максимального значения $T_c \sim 2.8$ K, обнаруженного для твердых растворов (Pb_zSn_{1-z})_{0.95}In_{0.05}Te при содержании свинца $z \sim 0.15-0.25$. Обнаружено, что увеличение давления до $P \le 9$ kbar приводит к колоколообразной зависимости $T_c(P)$. Наблюдаемые зависимости связаны с влиянием гидростатического сжатия на зонную структуру твердого раствора и свидетельствуют о смещении при увеличении давления положения уровня Ферми E_F в пределах примесной полосы квазилокальных состояний In. При этом E_F проходит через максимум плотности примесных соединений при P = 3-5 kbar.

Работа выполнена при поддержке РФФИ (грант № 07-02-00726-а), гранта Президиума РАН и НШ-2184.2008.2.

1. Введение

Теллуриды свинца и олова являются специфическими узкозонными полупроводниками, кристаллизующимися с большим количеством электрически активных собственных дефектов, вследствие чего в нелегированных кристаллах концентрация носителей тока при *T* → 0 K остается неизменно высокой (порядка $n, p \sim 10^{18} - 10^{20} \,\mathrm{cm}^{-3})$ [1]. При легировании как бинарных материалов, так и их соединений (PbTe и SnTe образуют непрерывный ряд твердых растворов замещения Pb_zSn_{1-z}Te) примесями III группы таллием и индием материалы приобретают новые и во многом необычные физические свойства. Так, в PbTe : In и Pb_zSn_{1-z}Te : In при низких температурах T < 20 K наблюдаются долговременные процессы релаксации неравновесных электронов [2]; в PbTe : Tl, SnTe : In и Pb_zSn_{1-z}Te : In при температурах ниже гелиевой наблюдается переход в сверхпроводящее (СП) состояние с относительно высокой для полупроводников критической температурой СП-перехода T_c , достигающей в (Pb_{0.5}Sn_{0.5})_{0.84}In_{0.16}Te 4.2 К [3]. Указанные свойства этих соединений обусловлены тем, что при их легировании (In, Tl) образуются глубокие примесные состояния, расположенные на фоне разрешенного спектра и не сливающиеся с ним. Такие примесные состояния являются квазилокальными (резонансными) [4] и стабилизируют (пиннингуют) уровень Ферми, если количество собственных дефектов не превышает количество примеси. Расположение примесных состояний индия E_{In} зависит от состава твердого раствора. При больших значениях $z > 0.78 E_{\text{In}}$ находится в зоне проводимости материала. Уменьшение количества свинца в соединении приводит к смещению E_{In} в запрещенную зону, и при z < 0.6 примесные состояния углубляются в валентную зону Pb_zSn_{1-z}Te: In. Отметим, что изменение состава приводит к перестройке энергетического спектра и соответственно к кардинальному изменению физических свойств твердого раствора. Так, при низких температурах наблюдается переход сверхпроводник-диэлектрик в (Pb_zSn_{1-z})_{0.84}In_{0.16}Te [5]. Энергия примесных состояний In зависит также и от количества введенного индия, с ростом содержания которого на шкале энергий дырок их энергия возрастает [6].

Гидростатическое сжатие также влияет на параметры зонной структуры — взаимное расположение основных зонных экстремумов и E_{In} — и является прецизионным инструментом управления энергетическими характеристиками материала. В литературе, однако, имеется весьма ограниченная информация о влиянии гидростатического сжатия на электрофизические свойства соединений A^4B^6 с примесями III группы элементов (в первую очередь In и Tl) и твердых растворов на их основе [2,7–9]. Кроме того, до сих пор отсутствует удовлетворительное теоретическое описание глубоких примесных состояний In и Tl в соединениях A^4B^6 , что делает особенно важным экспериментальное исследование этих материалов в условиях гидростатического сжатия — дополнительного инструмента для изучения примесных состояний индия в проводимости Pb₇Sn₁₋₇Te : In и индуцированной ими сверхпроводимости.

2. Экспериментальные результаты и их обсуждение

В качестве объекта исследования был выбран образец поликристаллического твердого раствора теллуридов

Рис. 1. Величина критической температуры сверхпроводящего перехода T_c в зависимости от содержания свинца z в твердом растворе (Pb_zSn_{1-z})_{0.95}In_{0.05}Te. Стрелкой отмечен выбранный для исследований состав твердого раствора с величиной ширины запрещенной зоны $E_g = 0.15$ eV.

свинца и олова состава $(Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te$ на основе следующих соображений (рис. 1).

1) Как следует из рис. 1, СП-переход в материале данного состава наблюдался при $T \approx 2.3$ К, что позволяет в эспериментально удобном температурном интервале 1.5-4.2 К проследить динамику изменения критической температуры СП-перехода в условиях гидростатического сжатия. На рис. 1 выбранный состав образца соответствует падающей "стороне" зависимости $T_c(z)$, т.е. находится вблизи перехода СП–диэлектрик при z > 0.4 (по аналогии с [5]).

2) При содержании свинца z = 0.65 в твердом растворе $Pb_z Sn_{1-z}$ Те наблюдается бесщелевое состояние, что позволяет рассчитывать на относительно большое влияние всестороннего сжатия на низкотемпературную проводимость изученного образца с близким к бесщелевому состоянию составом z = 0.3.

3) Ранее [10] отмечалось, что растворимость примеси In в Pb_zSn_{1-z}Te достигает ~ 20 at.% (без признаков выпадения второй фазы), поэтому выбранное в работе содержание примеси In x = 0.5 является заведомо "малой" концентрацией, сохраняющей локализацию примесных состояний в валентной зоне соединения.

Изучение электрофизических (в том числе СП) свойств ($Pb_{0.3}Sn_{0.7}$)_{0.95}In_{0.05}Te проводилось в образце, изготовленном по металлокерамической технологии. Было показано [11], что в халькогенидах свинца такая методика позволяет получать материалы, свойства которых близки к монокристаллическим образцам.

Контакты к образцу изготавливались с помощью серебряной токопроводящей пасты "контактол". Измерения проводились на постоянном токе в диапазоне температур T = 1.35-300 К в магнитных полях H до 1 Т (электромагнит). Критические параметры СП-перехода T_c и $H_{c2}(T)$ определялись из температурных и магнитополевых зависимостей удельного сопротивления $\rho(T)$ и $\rho(H)$ на уровне $\rho = 0.5\rho_N$ (ρ_N — сопротивление в нормальном состоянии при $T \leq 4.2$ К). Образец помещался в автономную камеру высокого давления, ана-

логичную [7,12], величина гидростатического сжатия до 12 kbar (при $T = 300 \,\text{K}$) определялась по изменению сопротивления манганинового датчика. При понижении температуры со скоростью 10 K/min наблюдался низко-температурный сброс давления в камере $\Delta P \approx 3 \,\text{kbar}$, поэтому при $T < 77 \,\text{K}$ используемый диапазон давлений был $P = 1 \,\text{bar} - 9 \,\text{kbar}$ при сохранении гидростатичности [12].

Отметим, что барические исследования низкотемпературной проводимости и СП-свойств $Pb_z Sn_{1-z}$ Те : In с большим содержанием $In(N_{In} > 1 \text{ at.}\%)$ ранее не проводились. Экспериментальные данные об удельном сопротивлении ($Pb_{0.3}Sn_{0.7}$)_{0.95}In_{0.05} Те при понижении температуры 1.35 < T < 300 К в условиях гидростатического сжатия (1 bar - 9 kbar, T = 4.2 К) приведены на рис. 2, a, b. Зависимости $\rho(T)$ имеют характерный для СП-образцов $Pb_z Sn_{1-z}$ Те : In вид с учетом близости ($Pb_{0.3}Sn_{0.7}$)_{0.95}In_{0.05} Те к переходу СП-диэлектрик [5]. Более детально барические зависимости $\rho(T)$ и $\rho(H)$ изучались в гелиевой области температур 1.35 < T < 4.2 К (рис. 2, a). Рис. 3 демонстрирует разрушение сверхпроводящего состояния ($Pb_{0.3}Sn_{0.7}$)_{0.95}In_{0.05} Те магнит-

Рис. 2. Температурные зависимости удельного сопротивления образца ($Pb_{0.3}Sn_{0.7}$)_{0.95}In_{0.05}Te при различных величинах гидростатического сжатия. *P*, kbar: *1* — 0.001, *2* — 3, *3* — 5, *4* — 7, *5* — 9. *a* — в области СП-перехода, *b* — в температурном интервале до 300 K.

Рис. 3. Зависимость удельного сопротивления образца $(Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te$ от напряженности магнитного поля H при различных температурах ниже критической $T_c = 2.56$ K в условиях гидростатического сжатия P = 7 kbar, T, K: I = 2.45, 2 = 2.43, 3 = 2.42, 4 = 2.38, 5 = 2.31, 6 = 2.21, 7 = 1.96, 8 = 1.83, 9 = 1.69, 10 = 1.57.

Рис. 4. Зависимость критической температуры сверхпроводящего перехода в твердом растворе $(Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}$ Те от давления P = 0.001-9 kbar. I — из данных по $\rho(T)$, 2 — из данных по $H_{c2}(T)$ при $T \rightarrow T_c$.

ным полем H < 1 Т при температурах ниже критической T_c . Представленные на рис. З зависимости были получены при фиксированном давлении P = 7 kbar и характерны для всей исследованной барической области 1 bar-9 kbar.

Критическая температура T_c определялась из экспериментальных данных, представленных на рис. 2 на уровне $\rho(T) = 0.5\rho_N$ и в зависимости от давления показана на рис. 4. Критические магнитные поля $H_{c2}(T)$ (при $T < T_c$) находились из данных рис. 3 также при $\rho(T) = 0.5\rho_N$. На основе этих данных при фиксированных давлениях (рис. 5) была получена зависимость производной второго критического магнитного поля по температуре при $T \to T_c$ в твердом растворе (Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te от степени гидростатического сжатия в $|\partial H_{c2}/\partial T|_{T \to T_c}(P)$ (рис. 6). Экстраполяцией $H_{c2}(T)$ к значениям $H_{c2} = 0$ по данным магнитных измерений определялась критическая температура T_{cm} , также представленная на рис. 4. Как видно, значения T_{cm} близки к T_c , определенной из электрических измерений во всем диапазоне давлений $P \leq 9$ kbar.

Как было показано ранее [3,7,10,11], зависимости T_c от количества дополнительной акцепторной примеси N_a в PbTe : (Tl, N_a), SnTe : (In, N_a) ($T_c(N_a)$) и от содержания свинца z в Pb_zSn_{1-z}Te : In ($T_c(z)$) обусловлены следующими факторами: 1) прохождением уровня Ферми через пик плотности квазилокальных состояний, расположенных на фоне разрешенного спектра валентной зоны соединения [10,11]; 2) взаимным расположением зон "легких, и "тяжелых"(Σ , Δ) носителей [13] и энергетическим положением примесной полосы квазилокальности квазилокальности квазилокальности слединения зон "легких, и "тяжелых"(Σ , Δ) носителей [13] и энергетическим положением примесной полосы квазилокальности квазилокальности квазилокальности спектра валентной зоны соединения (Σ , Δ) носителей [13] и энергетическим положением примесной полосы квазилокальности квазилокальности квазилокальности квазилокальности квазилокальности квазилокальности слединения [10,11]; 2) взаимным расположением зон "легких, и "тяжелых"(Σ , Δ) носителей [13] и энергетическим положением примесной полосы квазилокальности квазилокальности квазилокальности квазилокальности квазилокальности квазилокальности квазилокальности квазилокальности валентной зоны соединения [10,11]; 2) взаимным расположением зон "легких, и "тяжелых"(Σ , Δ) носителей [13] и энергетическим положением примесной полосы квазилокальности квазилокальности валентности квазилокальности спектра валентной валентности квазилокальности спектра валентной зоны соединения [10,11]; 2) взаимным расположением зон "легких, и "тяже в соединением примесной полосы квазилокальности квазилокальности квазилокальности квазилокальности квазилокальности квазилокальности квазилокальности спектра валентной зоны соединением примесной полосы квазилокальности квазилока.

Рис. 5. Зависимость второго критического магнитного поля от температуры в твердом растворе ($Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}$ Те при изменении давления *P*, kbar (T_{cm} , K): I - 0.001 (2.77), 2 - 3 (2.81), 3 - 5 (2.80), 4 - 7 (2.52), 5 - 9 (2.29). Критическая температура по данным магнитных измерений T_{cm} определялась путем экстраполяции зависимостей $H_{c2}(T)$ к значениям $H_{c2} = 0$.

Рис. 6. Зависимость производной второго критического магнитного поля по температуре при $T \rightarrow T_c$ в твердом растворе (Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te от степени гидростатического сжатия.

Рис. 7. Барические зависимости удельного сопротивления в твердом растворе $(Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te.$ *T*, K: *I* — 4.2, 2 — 300.

Рис. 8. Зависимость плотности состояний на уровне Ферми N(0) в (Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te от величины гидростатического сжатия *P* (расчет по формуле (1) в соответствии с данными рис. 6,7).

ных состояний индия E_{In} в спектре PbSnTe : In [3,11]; 3) величиной вклада резонансного рассеяния, характеризующего интенсивность обмена электронами между зонными и примесными состояниями и зависящего от факторов 1 и 2 [14].

Как видно из рис. 4, барическая зависимость $T_c(P)$ имеет колоколообразный характер с максимумом $T_c \approx 2.8$ К в области давления $P \sim 2-4$ kbar. Качественно поведение T_c подобно наблюдавшейся ранее в PbTe : Tl и SnTe : In зависимости T_c от концентрации дополнительной акцепторной примеси [10,11] (Na и избыточного Te соответственно), связанной с изменением положения E_F в пределах примесной полосы. По аналогии наблюдающийся в (Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te барический "колокол" $T_c(P)$ может соответствовать прохождению уровня Ферми $E_F(P)$ через пик примесных состояний In при смещении E_F под действием гидростатическогосжатия и сканированию плотности примесных состояний индия, максимум которой соответствует максимуму T_c .

На рис. 7 представлены барические зависимости удельного сопротивления $\rho(P)$ при комнатной температуре и при $T = 4.2 \text{ K} (\rho_N)$. Как следует из эксперимента, с ростом давления сопротивление $(Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}$ Те монотонно уменьшается, что свидетельствует о некото-

ром уменьшении интенсивности резонансного рассеяния дырок в примесную полосу индия, наиболее заметном при низких температурах.

На основе экспериментальных данных для удельного сопротивления образца при $T = 4.2 \text{ K} \rho_N$ (рис. 7) были сделаны оценки плотности состояний на уровне Ферми N(0) в расчете на один спин в соответствии с формулой [3]

$$N(0) = 2.84 \cdot 10^{14} \cdot |\partial H_{c2} / \partial T|_{T \to T_c} \cdot \rho_{N^{-1}}.$$
 (1)

Размерности величин в (1) имеют следующий вид:

$$[N(0)] = eV^{-1} \cdot cm^{-3},$$
$$[|\partial H_{c2}/\partial T|_{T \to T_c}] = Oe/K, [\rho_N] = \Omega \cdot cm.$$

Результаты расчета приведены на рис. 8, из которого видно, что плотность состояний N(0)в (Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te мало изменяется во всем диапазоне используемых давлений и соответствует значениям N(0), полученным ранее для $(Pb_z Sn_{1-z})_{0.95} In_{0.05} Te c co$ держанием свинца z < 0.45, что соответствует СП-области составов для этого материала [3]. Можно предположить, что увеличение давления, как и изменение количества свинца в твердом растворе, приводит к смещению E_{In} (и пиннингуемого им E_{F}) к потолку валентной зоны. При этом уменьшается суммарная (учитывая сложный спектр валентной зоны) плотность зонных состояний. Соответственно уменьшается взаимодействие зонных и примесных состояний и интенсивность резонансного рассеяния, как и следует из данных рис. 7. Это в свою очередь приводит к сужению полосы индия и росту плотности примесных состояний в максимуме. По-видимому, эти процессы в значительной мере компенсируют друг друга, и в результате суммарная плотность состояний изменяется мало, что и следует из рассчитанных величин N(0) на рис. 8.

Таким образом, на основе экспериментальных данных о барических завсимостях параметров СП-перехода $T_c(P)$, $|\partial H_{c2}/\partial T|_{T \to T_c}$ и плотности состояний на уровне Ферми N(0) в (Pb_zSn_{1-z})_{0.95}In_{0.05}Te можно предположить, что под действием давления квазилокальный уровень примесных состояний In E_{In} смещается к потолку валентной зоны, что согласуется с результатами работы [8]. Такое смещение E_{In} приближает начало перехода материала при увеличении P в диэлектрическое состояние, т. е. аналогично процессу фазового перехода, наблюдавшемуся ранее [3,5] в (Pb_zSn_{1-z})_{1-x}In_xTe при увеличении количества свинца в материале с фиксированным содержанием In.

3. Заключение

Экспериментально установлены зависимости критической температуры сверхпроводящего перехода T_c , второго критического магнитного поля H_{c2} и удельного сопротивления от степени гидростатического сжатия

в (Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te. Полученные данные обнаруживают корреляцию в смещении положения примесных состояний In в энергетическом спектре материала с изменениями параметров сверхпроводящего состояния, что согласуется с концепцией примесных состояний In в $(Sn_{1-z}Pb_z)_{1-x}In_x$ Te и их роли в усилении сверхпроводящих свойств соединения. Применение гидростатического сжатия позволило осуществить сканирование пика плотности состояний уровнем Ферми и перевести (Pb_{0.3}Sn_{0.7})_{0.95}In_{0.05}Te из сверхпроводящей области в переходную область, близкую к диэлектрическому состоянию.

Список литературы

- Н.А. Абрикосов, Л.Е. Шелимова. Полупроводниковые материалы на основе соединений A⁴B⁶. Наука, М. (1975). 196 с.
- [2] Б.А. Волков, Л.И. Рябова, Д.Р. Хохлов. УФН 172, 875 (2002); А.И. Белогорохов, Б.А. Волков, И.И. Иванчик, Д.Р. Хохлов. Письма в ЖЭТФ 72, 178(2000).
- [3] Р.В. Парфеньев, Д.В. Шамшур, С.А. Немов. ФТТ 43, 1772 (2001).
- [4] С.А. Немов, Ю.И. Равич. УФН 168, 817 (1998).
- [5] В.И. Козуб, Р.В. Парфеньев, Д.В. Шамшур, Д.В. Шакура, С.А. Немов. Письма в ЖЭТФ 84, 37 (2006).
- [6] В.В. Голубев, Н.И. Гречко, С.Н. Лыков, Е.П. Сабо, И.А. Черник. ФТП 11, 1704 (1977).
- [7] С.А. Казьмин, В.И. Кайданов, С.А. Немов, Р.В. Парфеньев, Д.В. Шамшур, М.Л. Шубников. ФТТ 26, 3205 (1984).
- [8] Б.А. Акимов, В.П. Зломанов, Л.И. Рябова, С.М. Чудинов, О.Б. Яценко. ФТП 13, 1293 (1979).
- [9] Ю.А. Равич, Б.А. Ефимова, И.А. Смирнов. Методы исследования материалов в применении к халькогенидам свинца PbTe, PbSe и PbS. Наука, М. (1968). 384 с.
- [10] Р.В. Парфеньев, Д.В. Шамшур, С.А. Немов. ФТТ **41**, 2132 (1999).
- [11] В.И. Кайданов, С.А. Немов, Р.В. Парфеньев, Д.В. Шамшур. Письма в ЖЭТФ **35**, 517 (1982).
- [12] М.Л. Шубников. ПТЭ 5, 178 (1981).
- [13] О.Е. Квятковский. ФТТ **32**, 2862 (1990).
- [14] В.И. Кайданов, С.А. Немов, Ю.И. Равич. ФТП **26**, 201 (1992).