Фотохромный эффект в кристаллах Bi₁₂SiO₂₀, легированных молибденом

© Т.В. Панченко, К.Ю. Стрелец

Днепропетровский национальный университет, Днепропетровск, Украина E-mail: sksu83@mail.ru

(Поступила в Редакцию 18 февраля 2008 г.)

Исследованы спектры стационарного и фотоиндуцированного поглощения кристаллов $Bi_{12}SiO_{20}$, легированных молибденом. Показано, что примесное поглощение обусловлено ионами Mo^{6+} и Mo^{5+} , занимающими близкие к тетраэдрическим позиции Si^{4+} . Предлагается механизм фотохромного эффекта, включающий изменение зарядового состояния примесных ионов молибдена по схеме: $Mo_{Si}^{6+} + e^- \rightarrow Mo_{Si}^{5+}$.

PACS:78.20.Gi, 71.70.Ch

1. Введение

Фотохромные свойства и особенности оптического поглощения весьма существенны для функционирования фоторефрактивных кристаллов силленитов Bi12MeO20 (BMeO, где Me = Si, Ge, Ti) в устройствах записи, обработки и хранения оптической информации. Актуальной является задача оптимизации свойств ВМеО путем легирования. К настоящему времени известен характер влияния на поглощение, фотохромный эффект (ФХЭ) и фотопроводимость ВМеО примесных ионов Al, Ga, Cr, Mn, V, Fe, тогда как роль ионов группы палладия, в частности Мо, изучена мало. В то же время во многих оксидных материалах (PbWO₄: Mo [1], пленки MoO₃ [2], кластеры оксида Мо в расворах [3], кристаллы РbMoO₄ [4]) молибден обусловливает фотохромизм, модифицирует благодаря 4*d*-электронным переходам и переходам с переносом заряда спектры оптического поглощения и фотолюминесценции.

В кристаллах BSO: Mo (BMeO: Mo, где Me = Si) ионы Мо ответственны за уменьшение оптического поглощения и фототока [5]. В кристаллах BGO: Мо (BMeO, где Me = Ge) наблюдался $\Phi X \Im$, при этом широкая полоса фотоиндуцированного поглощения интерпретирована как постоянная, поскольку описывается соответственно модифицированной гауссовской кривой и имеет характерную температурную зависимость [6-8]. Однако данная полоса находится в видимой области спектра, в которой проявляют себя центры окраски ВМеО в виде так называемых антиструктурных ионов висмута, занимающих позиции Ме. Аналогичная ситуация отмечена и для других ионов группы палладия и платины (Ru, Rh, Os) [9]. Поэтому вопрос о природе центров окраски, связанных с Мо, и механизме ФХЭ остается открытым. Можно рассчитывать на получение новой информации о зарядовом состоянии, локализации ионов Мо в силленитах в ходе оптических исследований с варьированием условий экспериментов.

В настоящей работе приведены результаты дальнейшего изучения оптического поглощения и ФХЭ в кристаллах BSO: Mo.

2. Методика экспериментов

Кристаллы BSO и BSO: Мо были выращены методом Чохральского вдоль кристаллографического направления [001]. Легирование достигалось введением оксида молибдена в шихту (3 mol.%). Кристаллы BSO: Мо имели лимонно-желтый цвет в отличие от коричневожелтых BSO. Образцы для исследования были приготовлены в виде полированных пластин с большими плоскостями (001) и толщиной d = 0.03-5 mm.

Спектры оптического пропускания t(hv) регистрировались при $T = 90 \,\mathrm{K}$ на спектрофотометре Cary-5E в области энергии фотонов $hv = 0.4-3.3 \,\text{eV}$, перекрывающей область оптической прозрачности кристаллов ВМеО. За равновесное принималось состояние образцов после прогрева на воздухе до 800 К и медленного (не менее суток) охлаждения до $T = 90 \,\text{K}$. $\Phi \text{X} \exists$ возбуждался и стирался светом (с энергией квантов $hv_1 = 2 - 2.8 \text{ eV}, hv_2 = 0.5 - 2.3 \text{ eV}$ соответственно) галогеновой лампы HLPA с интерференционными светофильтрами. Процедура состояла в следующем. На образцах, приведенных в равновесное состояние, измерялись спектры стационарного пропускания $t_0(hv)$. После фотоактивации (10 min) образцов светом с энергией фотонов hv1, обусловливающей выведение электронной подсистемы из равновесия, измерялись спектры фотоиндуцированного пропускания $t^{pi}(hv)$. Затем образцы 10 min освещались светом с $hv_2 < hv_1$, обеспечивающим релаксацию электронной подсистемы к равновесию, после чего измерялись спектры пропускания $t^{pd}(hv)$, характеризующие оптическое стирание (ОС) фотоиндуцированного пропускания. Для исключения влияния фоновой подсветки все манипуляции (прогрев, размещение образцов в криостате) осуществлялись при слабой красной подсветке, которая не вызывает ФХЭ.

Исследовались спектры стационарного $\alpha_0(h\nu)$ и фотоиндуцированного $\alpha^{pi}(h\nu)$ поглощения, оптического стирания фотоиндуцированного поглощения $\alpha^{pd}(h\nu)$ и разностные спектры, характеризующие ФХЭ, $\Delta \alpha^{\text{PCE}}(h\nu) = \alpha^{pi}(h\nu) - \alpha_0(h\nu)$, а также оптическое стирание ФХЭ, $\Delta \alpha^{\text{OD}}(h\nu) = \alpha^{pi}(h\nu) - \alpha^{pd}(h\nu)$. Спектры рассчитывались по методике [10].

Рис. 1. Спектры стационарного $\alpha_0(h\nu)$ (*1*, 2) и фотоиндуцированного оптического поглощения $\alpha^{pi}(h\nu)$ (*1'*, 2') кристаллов BSO (*1*, *1'*) и BSO: Mo (2, 2').

3. Результаты и обсуждение

3.1. Спектры поглощения. Ионы Мо заметвлияют на стационарное поглощение кристално лов BSO в диапазонах hv = 0.5 - 1.6 (A), 1.6 - 2.5 (B) и $2.5-3.35 \,\mathrm{eV}$ (C). Монотонно спадающие (с уменьшением hv) зависимости $\alpha_0(hv)$ нелегированного BSO с плечом поглощения в интервале $hv = 2.7 - 3.1 \, \text{eV}$, примыкающим к краю фундаментального поглощения (С-диапазон), в кристаллах BSO: Мо приобретает четко выраженную структуру из двух интенсивных и одной слабой полосы, а край поглощения смещается в УФ-область. Поглощение в В-диапазоне падает (рис. 1). Этот эффект просветления кристаллов ВМеО, легированных Mo, а также Pd и Os отмечался paнee [6-8,9,11], однако структура поглощения в [6-8,11] не наблюдалась, в то же время является характерной особенностью поглощения многих Мо-содержащих кристаллов [2,4,12], а также, согласно [11], кристаллов BSO: Os. В А-диапазоне наблюдается слабый подъем поглощения (относительно BSO), и полоса с $hv_{\text{max}} = 1.1 \text{ eV}$ (рис. 1).

Более существенно влияние Мо на спектры фотоиндуцированного поглощения $\alpha^{pi}(hv)$. Если в нелегированном BSO после фотоактивации поглощение усиливается почти во всей спектральной области (лишь на ИКи УФ-границах А- и С-диапазонов наблюдается слабое обесцвечивание), то в кристаллах BSO: Мо поглощение на УФ-границе значительно уменьшается, а в А-, *В*-диапазонах — усиливается, при этом спектры $\alpha^{pi}(hv)$ приобретают ярко выраженную структуру (рис. 1).

В спектрах $\Phi X \ni \Delta \alpha^{PCE}$ нелегированного BSO доминируют полосы поглощения из *C*-диапазона, имеются слабая полоса поглощения с $hv_{max} = 1.49 \text{ eV}$ и полосы обесцвечивания на краях *A*- и *C*-диапазонов ($3.2 \le hv \le 1 \text{ eV}$). Спектры $\Delta \alpha^{PCE}$ кристаллов BSO: Мо смещены в длинноволновую область, доминирующие полосы поглощения более интенсивны и находятся в *B*-диапазоне, полоса ($hv_{max} = 1.1 \text{ eV}$) в *A*-диапазоне усиливается, а в *C*-диапазоне прописывается интенсивная полоса обесцвечивания (рис. 2). Максимальный интегральный $\Phi X \ni \int_{0.45}^{3.35} \Delta \alpha^{\text{PCE}}(hv) d(hv)$ для BSO: Мо приинерно в 1.5 раза выше, чем для BSO и наблюдается в условиях энергетически иной фотоактивации (светом с $hv_{1 \max} = 2.76 \text{ eV}$ в отличие от света $hv_{1 \max} = 2.61 \text{ eV}$ для BSO, рис. 2). Возбуждение $\Phi X \ni$ имеет разные

Рис. 2. Спектры $\Phi X \ni \Delta \alpha^{PCE}(h\nu)$ (*1*, *2*) и оптического стирания $\Phi X \ni \Delta \alpha^{OD}(h\nu)$ (*1'*, *2'*) кристаллов BSO (*1*, *1'*) и BSO: Мо (*2*, *2'*). На вставке — спектр дополнительного $\Phi X \ni \Delta \alpha^{*PCE}(h\nu)$ кристалла BSO: Мо.

Спектральный контур	Параметры полос				Ocuconuus	
	Спектральная позиция hv _{max} , eV	Интенсивность, $\alpha_{\rm max}, \ {\rm cm}^{-1}$	Полуширина <i>hv</i> _{1/2} , eV	Сила осциллятора, <i>F</i> ₀	Основные поглощающие центры	Тип переходов
BSO: Mo						
$lpha_0$	3.44 3.24 3.026	112.3 62.3 25	0.24 0.17 0.21	$5.5 \cdot 10^{-3} \\ 2.2 \cdot 10^{-3} \\ 1.1 \cdot 10^{-3}$	$(\mathrm{MoO_4})^{2-}$	$L \leftrightarrow M$
	3.13 2.82 2.59	3.7 3.13 4.63	0.13 0.2 0.404	$\begin{array}{c} 9.79 \cdot 10^{-5} \\ 1.27 \cdot 10^{-4} \\ 3.81 \cdot 10^{-4} \end{array}$	$\mathrm{Bi}_{\mathrm{Si}}^{3+},\ \mathrm{Bi}_{\mathrm{Si}}^{5+}$	_
$\Delta lpha^{ m PCE}$	2.13 1.7	7.27 4.9	0.6 0.492	$\begin{array}{c} 8.88 \cdot 10^{-4} \\ 4.9 \cdot 10^{-4} \end{array}$	$\mathrm{Mo}_{\mathrm{Si}}^{5+}$	d-d
	1.15 0.58	1.85 0.725	0.49 0.29	$\frac{1.85 \cdot 10^{-4}}{4.3 \cdot 10^{-5}}$		_
$\Delta^* \alpha^{PCE}$	2.297 2.06 1.8	2.1 2.64 5.97	0.41 0.25 0.41	$\begin{array}{c} 17.5\cdot 10^{-4} \\ 13.5\cdot 10^{-4} \\ 49.9\cdot 10^{-4} \end{array}$	Mo_{Si}^{5+}	d-d
	1.42	1.01	0.272	$5.6\cdot10^{-5}$	—	—
	1.195	1.15	0.27	$6.3 \cdot 10^{-5}$	—	—
	1.036	0.69	0.179	$2.5 \cdot 10^{-5}$	_	—
BSO						
$\Delta lpha^{ m PCE}$	3.1 2.794 2.57	1.986 2.58 2.11	0.28 0.484 0.59	$\begin{array}{c} 2.28 \cdot 10^{-3} \\ 5.2 \cdot 10^{-3} \\ 5 \cdot 10^{-3} \end{array}$	$\begin{array}{c} \operatorname{Bi}_{\operatorname{Si}}^{3+},\\ \operatorname{Bi}_{\operatorname{Si}}^{5+}\end{array}$	_
	2.23	2.33	0.65	$6.2 \cdot 10^{-3}$	-	—
	1.499	0.39	0.736	$1.17\cdot 10^{-3}$	-	_

Параметры и природа полос поглощения кристаллов BSO: Мо и BSO

длинноволновые границы: $hv_{1b} \approx 2.25 \text{ eV}$ (зеленый свет, BSO), $hv_{1b} \approx 1.24 \text{ eV}$ (ИК-свет, BSO: Мо, рис. 3).

Используя методику [13], мы разложили спектры $\alpha_0(h\nu)$, $\Delta \alpha^{\text{PCI}}(h\nu)$ кристаллов BSO ($\Delta \alpha_{\text{BSO}}^{\text{PCE}}$) и BSO: Mo ($\Delta \alpha_{\rm BSO:Mo}^{\rm PCE}$) на индивидуальные компоненты гауссовской формы (см. таблицу). Методика позволяет определить число компонент, их спектральные позиции и полуширины без априорного задания этих параметров. Было выявлено несколько полос поглощения, имеющих одно и то же спектральное положение ($hv_{max} = 3.1$; 2.8; 2.57 eV), и, очевидно, связанных с собственными дефектами BSO. С целью выделения вклада ионов Мо был рассчитан спектр дополнительного фотохромного эффекта $\Delta \alpha^{*PCE}(h\nu) = \Delta \alpha^{PCE}_{BSO:Mo} - \Delta \alpha^{PCE}_{BSO}$ и найдены его компоненты (см. таблицу). Он содержит структурированную *B*-полосу поглощения с $hv_{\text{max}} = 1.8 \text{ eV}$, бесструктурную *А*-полосу поглощения с $hv_{\text{max}} = 1.09 \text{ eV}$ и C-полосу обесцвечивания при $h\nu \leq 2.7 \,\mathrm{eV}$ (рис. 2, вставка).

При освещении светом с $hv_2 \leq hv_{1b}$ наблюдается частичное оптическое стирание ФХЭ, т.е. свет с $hv_2 = hv_{1b}$ инициирует ФХЭ, если электронная подсистема кристал-

Рис. 3. Спектры $\Phi X \ni \Delta \alpha^{PCE}(h\nu)$ кристалла BSO: Мо после фотоактивации светом с энергией квантов $h\nu_1 = 0.8$ (1), 1.24 (2), 1.559 (3), 2.25 (4), 2.76 eV (5).

Рис. 4. Диаграммы распределения вероятностей замещения примесными ионами молибдена тетраэдрически координированных ионов $\mathrm{Si}^{4+}(W_1)$ и октаэдрически координированных ионов $\mathrm{Bi}^{3+}(W_2)$.

лов BSO, BSO: Мо находится в равновесном состоянии, или приводит к ОС ФХЭ, если она возбуждена. Полное стирание достигается длительным освещением из ИК-диапазона, при этом спектры $\Delta \alpha^{OD}(h\nu)$ и $\Delta \alpha^{PCE}(h\nu)$ симметричны относительно оси $h\nu$ (рис. 2).

Описанные структурированные спектры стационарного, фотоиндуцированного поглощения и ФХЭ в силленитах, легированных молибденом, ранее не наблюдались. Выявление структуры обусловлено, скорее всего, большей концентрацией ионов Мо (кристаллы BSO: Мо были выращены из шихты, содержащей 3 mol.% MoO₃, что в 6 раз выше, чем в шихте для кристаллов BGO: Мо, исследованных в [6–8]).

3.2. Оптические переходы и ФХЭ. Интерпретация особенностей спектров $\alpha_0(hv)$, $\alpha^{pi}(hv)$, $\Delta \alpha^{\text{PCI}}(hv)$ и $\Delta^* \alpha^{\text{PCE}}(h\nu)$, обусловленных легированием, осложняется тем, что ионы Мо в разных зарядовых состояниях (от +1 до +6) могут замещать как ионы Bi³⁺, так и ионы Si⁴⁺ в узлах кристаллической решетки BSO. Однако оценка аналогично [14] вероятности замещений Ві³⁺-узлов (W₁) в искаженных кислородных октаэдрах (симметрия близка к C_2 [15]) и Si⁴⁺-узлов (W_2) в кислородных тетраэдрах в рамках модели, базирующейся на энергетической теории изоморфизма, показывает, что кристаллохимическая ситуация наиболее благоприятна для локализации ионов Мо⁶⁺ и Мо⁵⁺ вместо ионов Si⁴⁺ в тетраузлах кристаллической решетки BSO (рис. 4). При такой локализации ионы Мо образуют тетраэдрические комплексы МоО4 с высокой степенью ковалентности связей Мо-О [16]. Данная ситуация способствует образованию молекулярных орбиталей и электронным переходам с переносом заряда типа $L \leftrightarrow M$ (лиганд L (кислород)—металл M (молибден)).

Переходы $L \leftrightarrow M$ в молибдатах типа MeMoO₄ (где Me = Ca, Sr, Ba, Pb) с локализацией Мо в тетраэдрах обусловливают характерные спектроскопические особенности в виде двух интенсивных полос на краю фундаментального поглощения и/или в УФ-области $(v_{1,2} \sim 26\,000 - 27\,000$ и $36\,000 - 38\,000\,\mathrm{cm}^{-1})$; в других кристаллах эти полосы могут быть смещены в длинноволновую область в результате межионного взаимодействия [12]. Спектр поглощения тетраэдрических комплексов МоО₄ интерпретируется методами теории молекулярных орбиталей. В теории групп 4*σ*- и 8*π*-орбитали преобразуются как неприводимые представления a_1, e_1, e_2 t₁ и t₂. В схеме энергетических уровней, где основное состояние имеет конфигурацию ${}^{1}A_{1}$, а возбужденное — ${}^{1}T_{2}$, возможны два электронных перехода $L \leftrightarrow M$: $t_{1} \rightarrow e$ и $t_1 \rightarrow t_2 ({}^1A_1 \leftrightarrow {}^1T_2).$

В спектрах $\alpha_0(h\nu)$ кристаллов BSO: Мо были выделены индивидуальные компоненты поглощения в *С*-диапазоне (см. таблицу). Оценка силы осциллятора этих полос краевого поглощения из соотношения [2]

$$F_0 = 0.87 \cdot 10^{17} \, \frac{n}{(n^2 + 2)^2 N} \, \alpha_{\max} \Delta \nu_{1/2}, \tag{1}$$

где $\alpha_{\rm max}$ и $\Delta v_{1/2}$ — поглощение в максимуме (cm⁻¹) и полуширина компонент (eV); *n* — показатель преломления, *N* — концентрация молибдена (cm⁻³), дает $F_0 \sim 10^{-2} - 10^{-3}$, что соответствует силе осциллятора электрических дипольных переходов. Таким образом, представляется возможным связать две полосы краевого поглощения (см. таблицу) кристаллов BSO: Мо с переходами типа $L \leftrightarrow M$.

Для ионов Mo_{Si}^{5+} с электронной конфигурацией $4d^1$ возможны внутрицентровые *d*-*d*-переходы. Конфигурации d^1 принадлежит один терм 2D , который в тетраэдрическом поле расщепляется на два: ^{2}E и $^{2}T_{2}$, при этом ${}^{2}E$ — нижний. Переходам ${}^{2}E \rightarrow {}^{2}T_{2}$ соответствует одна широкая полоса, но в деформированном тетраэдре она может быть расщеплена. Поскольку сила кристаллического поля для 4d-ионов выше, чем для 3d-ионов, эта полоса может находиться в видимой области спектра. С использованием результатов разложения спектров $\Delta \alpha^{\text{PCI}}(h\nu), \Delta^* \alpha^{\text{PCE}}(h\nu)$ и соотношения (1) была найдена сила осциллятора индивидуальных компонент поглощения кристаллов BSO: Мо (см. таблицу). Известно, что для d-d-переходов $F_0 \sim 10^{-4} - 10^{-5}$. Учитывая спектральное положение и большую полуширину, несколько компонент с силой осциллятора $\sim 10^{-4}$ можно связать с 4*d*-*d*-переходами в тетраэдрически координированных ионах Мо_{Si}⁵⁺ (см. таблицу).

С-полосы стационарного, фотоиндуцированного поглощения и ФХЭ кристаллов BSO и BSO: Мо, имеющие общее спектральное положение и силу осциллятора $F_0 \sim 10^{-2}$ (см. таблицу), согласно [17], обусловлены собственными центрами окраски BSO в виде так называемых антиструктурных ионов $\mathrm{Bi}_{\mathrm{Si}}^{3+}$, $\mathrm{Bi}_{\mathrm{Si}}^{5+}$, занимающих позиции Si^{4+} .

Принимая во внимание высокую вероятность замещения ионами Mo^{6+} и Mo^{5+} ионов Si^{4+} , фотоиндуцированное ослабление характерных для переходов типа $L \leftrightarrow M$ C-полос краевого поглощения, появление интенсивного дополнительного поглощения в В-области, которое может быть приписано внутрицентровым 4d-переходам, позволяет предположить, что ФХЭ обусловлен изменением соотношения концентраций разнорядных ионов Мо. Фотохимическая реакция, ответственная за изменение заряда Мо при переходе кристаллов BSO: Мо в метастабильное состояние, имеет вид: $Mo_{Si}^{6+} + e^- \rightarrow Mo_{Si}^{5+}$, где e^- — электрон, возбуждаемый с локальных уровней запрещенной зоны кристаллов BSO: Мо. Необходимая зарядовая компенсация Мо⁶⁺_{Si}, Мо_{Si}⁵⁺ может осуществляться во второй координационной сфере, например, за счет вакансий в Ві-подрешетке.

4. Заключение

 Получены структурированные спектры стационарного, фотоиндуцированного поглощения и ФХЭ кристаллов BSO: Мо в области их прозрачности (0.5–3.35 eV).

2) Показано, что легирование BSO ионами Мо обусловливает существенное усиление реверсивного ФХЭ и его смещение (относительно BSO) в длинноволновую область спектра.

3) В рамках модели микроизоморфизма определено как наиболее вероятное замещение ионами Mo^{6+} и Mo^{5+} ионов Si⁴⁺ в кислородных тетраэдрах.

4) Показано, что особенности оптического поглощения кристаллов BSO: Мо обусловлены переходами с переносом заряда типа лиганд-металл и внутрицентровыми 4*d*-переходами с участием ионов Mo_{Si}^{6+} и Mo_{Si}^{5+} . Предложена схема изменения зарядового состояния этих ионов, описывающая ФХЭ.

Список литературы

- М.У. Білий, С.Г. Неділько, Ю.А. Хижний, О.В. Чукова, В.І. Шелудько. УФЖ 47, 9, 846 (2002).
- [2] А.И. Гаврилюк, Н.А. Секушин. Электрохромизм и фотохромизм в оксидах вольфрама и молибдена. Наука, Л. (1990). 104 с.
- [3] В. Н. Андреев, С.Е. Никитин, В.А. Климов, Ф.А. Чудновский, С.В. Козырев, Д.В. Лещев. ФТТ 41, 1323 (1999).
- [4] Т.М. Бочкова, М.Д. Волнянский, Д.М. Волнянский, В.С. Щетинкин. ФТТ 45, 235 (2003).
- [5] В.И. Чмырев, В.М. Скориков, И.В. Цисарь, А.Я. Васильев, Ю.Ф. Каргин, Т.Д. Дудкина. Высокочистые вещества 2, 88 (1991).
- [6] M.T. Borowiec. SPIE 1845, 110 (1992).
- [7] M.T. Borowiec, B. Kozankiewicz, T. Lukasiewicz, J. Zmua. J. Phys. Chem. Solids 54, 8, 955 (1993).
- [8] M.T. Borowiec. SPIE 3178, 173 (1997).
- [9] H. Bou Rjeily, F. Ramaz, D. Petrova, M. Gospodinov, B. Briat. SPIE 3178, 169 (1997).
- [10] T.V. Panchenko, S.Yu. Kopylova. Ferroelectrics 322, 69 (2005).
- [11] V. Marinova, M. Veleva, D. Petrova, I.M. Kourmoulis, D.G. Papazoglou, A.G. Apostolidis, E.D. Vanidhhis, N.C. Deliolanis. J. Appl. Phys. 89, 5, 2686 (2001).
- [12] А.Н. Платонов. Природа окраски минералов. Наук. думка. Киев (1976). 264 с.
- [13] Д.Н. Глебовский, А.А. Крашенинников, М.Е. Бедрина, П.И. Зеликман. ЖПС **35**, *3*, 513 (1981).
- [14] T.V. Panchenko, N.A. Truseeva, K.Yu. Strelets. Funct. mat. 12, 4, 707 (2005).
- [15] В.С. Урусов. Теория изоморфной смесимости. Наука, М. (1977). 251 с.
- [16] С.Ю. Давыдов, Е.И. Леонов. ФТТ 30, 374 (1988).
- [17] T.V. Panchenko, N.A. Truseeva, Yu.G. Osetsky. Ferroelectrics 129, 113 (1992).