Свойства квазичастичных возбуждений в ферромагнитном сплаве FeCo

© И.А. Нечаев*,**, Е.В. Чулков**,***

 * Костромской государственный университет им. Н.А. Некрасова, Кострома, Россия
 ** Donostia International Physics Center (DIPC), San Sebastián, Basque Country, Spain
 *** Departamento de Física de Materiales, Facultad de Ciencias Químicas, UPV/EHU and Centro Mixto CSIC–UPV/EHU, San Sebastián, Basque Country, Spain

E-mail: ianechaev@mail.ru

(Поступила в Редакцию 5 мая 2008 г.)

Представлены результаты спин-поляризованного *ab initio GW*-расчета таких квазичастичных свойств, как спектральный вес, вермя жизни, скорость и средняя длина свободного пробега, для ферромагнитного сплава FeCo и его составляющих. Анализируется вклад локализованных *d*-состояний в указанные характеристики. Исследуется спиновая асимметрия свойств квазичастичных возбуждений, приводящая к наблюдаемому в эксперименте эффекту спинового фильтра. Сравнением с экспериментальными данными оценены вклады в длину свободного пробега процессов электронного рассеяния, которые не рассматриваются в рамках *GW*-приближения.

Работа выполнена при поддержке Отдела образования Правительства страны басков (grant № 9/UPV 00206.215-13639/2001) и Министерства науки и технологии Испании (grant № FIS2004-06490-C03-01).

PACS: 71.10.-w, 71.20.Be

1. Введение

Интенсивное развитие нового направления в прикладной физике — спиновой электроники (спинтроники) — привело к созданию целого ряда магнитоэлектронных устройств, представляющих собой спиновые аналоги уже ставших традиционными электронных приборов. Функциональность многих магнитоэлектронных устройств, построенных, как правило, на эффекте гигантского магнетосопротивления тонкопленочных гетероструктур, базируется на спин-зависимом транспорте возбужденных электронов и дырок в ферромагнитных материалах. Следовательно, становится важным теоретическое исследование характеристик этого транспорта для целенаправленного поиска оптимальных параметров создаваемых устройств. В рамках такого исследования прежде всего необходимо оценить вклад неупругого электрон-электронного (е-е) рассеяния в характеристики спин-зависимого транспорта. Для этого следует проанализировать зависимость обусловленного неупругим е-е-рассеянием конечного времени жизни и соответствующей средней длины свободного пробега квазичастиц от энергии возбуждения. Отметим, что ранее подобный анализ проводился как в рамках полуэмпирических подходов (см., например, [1,2]), так и на основе *ab initio* расчетов (см., например, [3]), но лишь для чистых ферромагнитных металлов Fe, Co и Ni. Однако для изучения различных эффектов в тонкопленочных гетероструктурах наиболее часто используются не чистые металлы, а ферромагнитные сплавы Co_xFe_{1-x} (как правило, с большим x) и Ni_xFe_{1-x} (в основном с $x \approx 0.8$) [4–7]. В связи

с этим целью настоящей работы являются изучение свойств квазичастичных возбуждений в ферромагнитном сплаве и сравнение этих свойств с аналогичными в чистых металлах, которые образуют этот сплав. В качестве объекта такого исследования в работе выбран FeCo, который в упорядоченном состоянии обладает сверхструктурой B2, что делает возможным проведение *ab initio* расчетов с достаточно большим числом **k**-точек (~ 300) в неприводимой части зоны Бриллюэна. Расчеты проводились в рамках *GW*-приближения. Кроме упорядоченный ОЦК-FeCo в приближении виртуального кристалла, что позволило изучить вопрос о влиянии степени дальнего атомного порядка на характеристики квазичастичных возбуждений.

2. Приближения и методика расчета

Как и в [8], в настоящей работе расчет свойств квазичастичных возбуждений проводится в рамках *GW*-приближения, где собственно энергетическая часть квазичастицы с направлением спина σ определяется как (в формулах (1)–(7) используется атомная система единиц, т.е. $e^2 = \hbar = m_e = 1$)

$$\Sigma_{\sigma}(\mathbf{r}_{1}, \mathbf{r}_{2}; \omega) = \frac{i}{2\pi} \int d\omega' e^{i\eta\omega'} G_{\sigma}(\mathbf{r}_{1}, \mathbf{r}_{2}; \omega')$$
$$\times W(\mathbf{r}_{1}, \mathbf{r}_{2}; \omega - \omega'). \tag{1}$$

Фактор сходимости $\exp(i\eta\omega')$ в (1) указывает на то, что контур интегрирования замыкается в верхней по-

луплоскости ω' . В настоящей работе в качестве G_{σ} используется функция Грина

$$G_{\sigma}(\mathbf{r}_{1}, \mathbf{r}_{2}; \omega) = \sum_{\mathbf{k}n}^{occ} \frac{\psi_{\mathbf{k}n\sigma}(\mathbf{r}_{1})\psi_{\mathbf{k}n\sigma}^{*}(\mathbf{r}_{2})}{\omega - \varepsilon_{\mathbf{k}n\sigma} - i\delta} + \sum_{\mathbf{k}n}^{unocc} \frac{\psi_{\mathbf{k}n\sigma}(\mathbf{r}_{1})\psi_{\mathbf{k}n\sigma}^{*}(\mathbf{r}_{2})}{\omega - \varepsilon_{\mathbf{k}n\sigma} + i\delta}, \qquad (2)$$

соответствующая уравнению Кона–Шема с обменнокорреляционным потенциалом V_{σ}^{XC} , полученным в рамках приближения локальной спиновой плотности. В (2) положительная бесконечно малая величина δ характеризует способ обхода полюсов при интегрировании. Расчет зонной структуры { $\psi_{\mathbf{k}n\sigma}$, $\varepsilon_{\mathbf{k}n\sigma}$ } проводится самосогласованным методом линеаризованных muffin-tin-орбиталей (ЛМТО) с использованием приближения атомных сфер при построении кристаллического потенциала. Экранированный кулоновский потенциал W, участвующий в определении Σ_{σ} , находится в рамках приближения хаотических фаз, где поляризационная функция P^0 задается соотношением

$$P^{0}(\mathbf{r}_{1}, \mathbf{r}_{2}; \omega) = -\frac{i}{2\pi} \sum_{\sigma} \int d\omega' G_{\sigma}(\mathbf{r}_{1}, \mathbf{r}_{2}; \omega')$$
$$\times G_{\sigma}(\mathbf{r}_{1}, \mathbf{r}_{2}; \omega' + \omega). \tag{3}$$

Время жизни квазичастичных возбуждений определяется как

$$\tau_{\mathbf{k}n\sigma} = \frac{1}{Z_{\mathbf{k}n\sigma}} |2 \operatorname{Im} \Delta \Sigma_{\mathbf{k}n\sigma} (\varepsilon_{\mathbf{k}n\sigma})|^{-1}, \qquad (4)$$

где ренормализационный фактор Z_{kn} есть

$$Z_{\mathbf{k}n\sigma} = \left[1 - \frac{\partial \operatorname{Re} \Delta \Sigma_{\mathbf{k}n\sigma}(\omega)}{\partial \omega}\right]_{\omega = \varepsilon_{\mathbf{k}n\sigma}}^{-1}, \quad (5)$$

а $\Delta \Sigma_{\mathbf{k}n\sigma}(\omega)$ — матричный элемент разницы собственно энергетической части и обменно-корреляционного потенциала V_{σ}^{XC} в состоянии $\psi_{\mathbf{k}n\sigma}$. В работе также исследуется средняя длины свободного пробега квазичастиц $\lambda_{\mathbf{k}n\sigma}^{e-e} = |\mathbf{v}_{\mathbf{k}n\sigma}| \tau_{\mathbf{k}n\sigma}$. Входящая в определение длины пробега скорость квазичастиц $\mathbf{v}_{\mathbf{k}n\sigma}$ может быть оценена как (см., например, [9])

$$\mathbf{w}_{\mathbf{k}n\sigma} = Z_{\mathbf{k}n\sigma} (\mathbf{v}_{\mathbf{k}n\sigma}^0 + \nabla_{\mathbf{k}} \operatorname{Re} \Delta \Sigma_{\mathbf{k}n\sigma}(\omega) \big|_{\omega = \varepsilon_{\mathbf{k}n\sigma}}), \quad (6)$$

где $\mathbf{v}_{\mathbf{k}n\sigma}^0 = \nabla_{\mathbf{k}} \varepsilon_{\mathbf{k}n\sigma}$. В силу определенных сложностей расчета второго слагаемого (6) в настоящей работе скорость квазичастиц находится приближенно как $\mathbf{v}_{\mathbf{k}n\sigma} = Z_{\mathbf{k}n\sigma} \mathbf{v}_{\mathbf{k}n\sigma}^0$, что приводит к длине свободного пробега, определяемой соотношением

$$\lambda_{\mathbf{k}n\sigma}^{e^{-e}} = \left| \frac{\mathbf{v}_{\mathbf{k}n\sigma}^{0}}{2 \operatorname{Im} \Delta \Sigma_{\mathbf{k}n\sigma}(\varepsilon_{\mathbf{k}n\sigma})} \right|. \tag{7}$$

Детали методики расчета времени жизни квазичастиц можно найти в работе [8]. Суммирование в расчетных формулах проводится по s-, p- и d-зонам и по набору точек $20 \times 20 \times 20$ вектора k, что для сверхструктуры В2 соответствует 286 (256 для ОЦК) точкам в 1/48 неприводимой части зоны Бриллюэна. Параметр решетки а для упорядоченного ферромагнитного сплава FeCo со сверхструктурой B2 выбирался равным 2.856 Å [10]. С таким же параметром решетки рассчитывались ОЦК-Fe,Со и разупорядоченный FeCo. Последний рассматривался в рамках приближения виртуального кристалла по аналогии с [11,12]. Такое приближение считается вполне приемлемым для рассматриваемого ферромагнитного сплава, так как его составляющие, будучи "соседями" в таблице Менделеева, характеризуются малой разницей между атомными d-уровнями по сравнению с шириной *d*-зоны, что соответствует случаю слабого рассеяния (см., например, [13]).

3. Результаты расчета и обсуждение

На рис. 1 представлена рассчитанная плотность электронных состояний (ПЭС) ферромагнитного сплава FeCo как в упорядоченном (B2), так и в разупорядоченном (ОЦК) состоянии. Из рисунка хорошо видно, что ПЭС виртуального кристалла очень близка к ПЭС B2-FeCo. Основные различия наблюдаются в области выше уровня Ферми E_F для электронов со спином вниз. Такая близость обусловлена схожестью электронных структур ОЦК-железа и ОЦК-кобальта, в которых основным эффектом является изменение энергии Ферми, связанное с добавлением одного электрона (рис. 2). С точки зрения ПЭС в этом же заключаются и основной сплавной эффект. Параметр решетки для ОЦК-Fe и Со брался таким же, как и для B2-FeCo, что очень близко как к равновесному параметру чистого железа, так и параметру ОЦК-решетки монокристаллических пленок кобальта, выращенных, например, на поверхности

Рис. 1. Плотность электронных состояний *B2*- (сплошная линия) и ОЦК-FeCo (пунктирная линия). Штрихпунктирной линией показана плотность электронных состояний ОЦК-FeCo, полученная в [14] в рамках приближения когерентного потенциала.

Материал	$\langle \mu angle$	$\mu_{ m Fe}$	$\mu_{ m Co}$	Литературная ссылка
FeCo(B2)	2.24	2.73	1.74	Наш расчет
	2.28	2.82	1.74	[16]
	2.25	2.78	1.78	[17]
	2.25	—	—	[18]
FeCo(OЦK)	2.22	_	_	Наш расчет
	2.24	2.67	1.81	[16]
	2.18	_	_	[11]
	2.15	2.57	1.73	[14]
Fe(OIIK)		2.22		Наш расчет
		2.26		[16]
		2.25		[14]
Со(ОЦК)			1.72	Наш расчет
			1.77	[16,18]
			1.72	[15,14]

Рассчитанные средний и локальные магнитные моменты (в μ_B)

GaAs [15]. Отметим, что ПЭС, полученная в рамках приближения когерентного потенциала (рис. 1), также воспроизводит ПЭС упорядоченного FeCo, демонстрируя лишь некоторое "размытие" пиковой структуры, обусловленное упругим рассеянием электронов в неупорядоченной среде.

С учетом закономерностей, выявленных в [8], представленные данные уже на уровне ПЭС позволяют качественно оценить отношение $\tau_{\uparrow}/\tau_{\downarrow}$ времен жизни квазичастичных возбуждений с разным направлением спина. Действительно, как видно из рис. 1, ПЭС для спина вверх в области уровня Ферми (особенно при $E > E_{\rm F}$) существенно ниже, чем ПЭС для спина вниз. Это означает, что — по крайней мере в этом энергетическом интервале — указанное отношение будет значительно превосходить единицу. Согласно рис. 2, еще большего значения $\tau_{\uparrow}/\tau_{\downarrow}$ может достичь в ОЦК-Со, в то время как в ОЦК-железе вблизи $E_{\rm F}$ это отношение должно быть меньше единицы.

Полученные характеристики магнитной структуры рассматриваемых ферромагнетиков приведены в таблице в сравнении с результатами других расчетов. Видно, что в согласии с последними локальный магнитный момент для кобальта (μ_{Co}) в *B*2-FeCo практически такой же, как и в чистом ОЦК-Со, тогда как магнитный момент для Fe (μ_{Fe}) в упорядоченном сплаве заметно больше, чем в ОЦК-железе. При переходе от упорядоченного состояния к разупорядоченному наблюдается уменьшение среднего магнитного момента $\langle \mu \rangle$, что находится в качественном согласии с экспериментом.

Результаты расчета времени жизни квазичастичных возбуждений с разным направлением спина в *B*2- и ОЦК-FeCo показаны на рис. 3. Для более наглядного представления зависимости времени жизни от энергии возбуждения на всем рассматриваемом энергетическом интервале на рис. 3 представлено произведение времени жизни на квадрат $E - E_{\rm F}$. Отметим, что в случае свободного электронного газа такое произведение не зависит от энергии возбуждения [19].

Анализируя данные, представленные на рис. 3, вопервых, отметим очень большое различие во временах жизни электронных возбуждений со спином вверх и спином вниз. Такое различие обусловливает появление так называемого эффекта спинового фильтра, который

Рис. 2. Плотность электронных состояний ОЦК-Fe (сплошная линия) и ОЦК-Со (штриховая линия) с параметром решетки упорядоченного FeCo.

Рис. 3. Умноженное на квадрат энергии возбуждения $E-E_F$ время жизни $\tau_{kn\sigma}$ квазичастиц со спином вверх (темно-серые точки) и вниз (светло-серые точки) в *B*2- и ОЦК-FeCo. Сплошная и штриховая линии представляют соответствующие времена жизни, усредненные по **k**.

715

Рис. 4. Ренормализационный фактор $Z_{kn\sigma}$ как функция энергии возбуждения $E - E_F$ для квазичастиц со спином вверх (темно-серые точки) и вниз (светло-серые точки) в *B*2- и ОЦК-FeCo. Сплошная и штриховая линии представляют соответствующие факторы, усредненные по **k**.

наблюдается в спин-зависимом транспорте электронов в ферромагнитных металлах [7]. Во-вторых, обратим внимание на сильную зависимость времени жизни дырочных возбуждений со спином вниз от **k**, о чем свидетельствует величина разброса точек, изображающих значения $\tau_{kn\downarrow}$. Это в свою очередь может привести к заметной пространственной анизотропии в спин-зависимом транспорте дырок. Наконец, сравнивая времена жизни квазичастиц в *B*2- и ОКЦ-FeCo, заметим, что, как и в случае с ПЭС, основные различия наблюдаются в области уровня Ферми.

Согласно соотношению (4), в определении времени жизни участвует как мнимая часть собственной энергии квазичастицы, так и ренормализационный фактор, который характеризует спектральный вес квазичастицы, а при $E = E_{\rm F}$ соответствует величине скачка функции распределения на поверхности Ферми. Рис. 4 демонстрирует поведение Z_{kn} как функции энергии возбуждения. Из рисунка видно, что, как и ПЭС соответствующих спиновых подсистем, $Z_{kn\uparrow}$ и $Z_{kn\downarrow}$ во многом повторяют друг друга, но со сдвигом по энергии на величину, задаваемую обменным расщеплением зон. Для обоих направлений спина характерен заметный "провал" в области доминирующего вклада локализованных *d*-состояний в ПЭС, что указывает на большое влияние многочастичных эффектов на характеристики этих состояний (см., например, [20]). Наибольшая разница в значениях Z_{kn↑} и Z_{kn⊥} наблюдается в энергетическом интервале от ~ 0 до ~ 3 eV. В пределах этого интервала высокой плотности *d*-состояний со спином вниз соответствует низкая ПЭС со спином вверх, где вклады от *d*- и *s p*-состояний сопоставимы (рис. 1). При $E-E_{\rm F} > 3 \, {\rm eV}$ спектральный вес электронных возбуждений слабо зависит от направления спина. Отметим также, что при переходе от упорядоченного FeCo к разупорядоченному представленные на рис. 4 величины практически не изменяются.

Для демонстрации сплавного эффекта, проявляющегося на уровне свойств квазичастиц, на рис. 5 представлены усредненные по k $au_{kn\uparrow}$ и $au_{kn\downarrow}$ как в FeCo, так и в ОЦК-Fe и Co. Как следует из рисунка, в целом в FeCo времена жизни квазичастичных возбуждений больше, чем в его составляющих, за исключением электронных возбуждений со спином вниз в железе. В области дырочных возбуждений по поведению времени жизни как функции энергии возбуждения сплав не похож ни на железо, ни на кобальт, тогда как в области электронных возбуждений FeCo близок к ОЦК-Со. На рис. 5 также представлены отношения $au_{\uparrow}/ au_{\downarrow}$ времен жизни квазичастичных возбуждений с разным направлением спина в FeCo и в его составляющих. Прежде всего отметим, что сказанное выше относительно спиновой асимметрии $\tau_{\uparrow}/\tau_{\downarrow}$ на основе формы ПЭС в области $E_{\rm F}$ качественно полностью согласуется с полученными ab initio результатами, которые в свою очередь позволяют количественно оценить рассматриваемое отношение. Так, в B2-FeCo в области уровня Ферми ($E-E_{\rm F}$ от 0 до $\sim 0.7\,{\rm eV}$) отношение $\tau_{\uparrow}/\tau_{\downarrow}$ достигает восьми, тогда как в ОЦК-Со оно больше 12. В ОЦК-железе в указанном энергетическом

Рис. 5. Умноженное на квадрат энергии возбуждения $E-E_{\rm F}$ и усредненное по **k** время жизни $\tau_{{\bf k}n\sigma}$ квазичастиц со спином вверх (кривые отмечены знаком \uparrow) и вниз (отмечены знаком \downarrow), а также отношение усредненных времен жизни $\tau_{\uparrow}/\tau_{\downarrow}$ квазичастиц с разным направлением спина. Экспериментальные данные 2Ф ФЭСВР для ОЦК-железа взяты из [1]. На вставке — отношение $\tau_{\downarrow}/\tau_{\uparrow}$ для дырочных возбуждений.

интервале $\tau_{\uparrow}/\tau_{\downarrow}$ изменяется от ~ 0.2 до ~ 0.8 и остается меньше единицы почти до $E-E_{\rm F} \sim 1.2$ eV. Однако для железа характерно практически неизменное обратное отношение $\tau_{\downarrow}/\tau_{\uparrow} \approx 2$ в области дырочных возбуждений (см. вставку на рис. 5). К сказанному добавим, что ОЦК-Со существенно отличается от других рассматриваемых ферромагнетиков достаточно большим $\tau_{\uparrow}/\tau_{\downarrow}$ в области дырочных возбуждений, которое, например, при удалении от $E_{\rm F}$ до $E-E_{\rm F} \approx -0.7$ eV падает с ~ 12 до ~ 6 и только после $E-E_{\rm F} \approx 1.5$ eV становится меньше единицы.

В среднем в области электронных возбуждений в *B*2-FeCo усредненное по **k** время жизни τ_{\uparrow} почти в 6.5 раз больше τ_{\downarrow} , что является существенным повышением по отношению к железу и некоторым понижением (в интервале $E-E_{\rm F}$ от 0 до $\sim 1.5\,{\rm eV}$) по отношению к кобальту. Что касается сравнения *B*2- и ОЦК-FeCo, то наибольшие различия в рассматриваемых отношениях наблюдаются в интервале $|E-E_{\rm F}| \lesssim 1\,{\rm eV}$. Отметим, что ни в упорядоченном, ни в разупорядоченном FeCo отношение $\tau_{\uparrow}/\tau_{\downarrow}$ не может быть представлено как средневзвешенное, полученное на основе результатов по ОЦК-Fe и Co.

На рис. 5 представлены экспериментальные данные по спин-зависимому времени релаксации, полученные в [1] для ОЦК-Fe с помощью техники двухфотонной фотоэмиссионной спектроскопии с временным разрешением (2Ф ФЭСВР). Сопоставляя эти данные с результатами расчета отношения $\tau_{\uparrow}/\tau_{\downarrow}$ в ОЦК-Fe, легко видеть, что несмотря на отсутствие учета в рамках *GW*-приближения каналов затухания квазичастичных возбуждений, обусловленных флуктуациями спиновой плотности, отношение времен релаксации фотовозбужденных электронов и отношение рассчитанных времен жизни квазичастиц достаточно близки. Это означает, что полученные в настоящей работе $\tau_{\uparrow}/\tau_{\downarrow}$ адекватно отражают зависимость времени жизни квазичастиц от направления спина σ в рассматриваемых ферромагнетиках.

В силу того что в формировании ПЭС Fe, Co и FeCo доминирующую роль играют d-состояния, то, как и в [8], можно предположить, что использование в (1) экранированного кулоновского потенциала W_d , построенного на поляризационной функции, учитывающей только *d*-*d*-переходы, приведет к результатам, мало отличающимся от представленных выше. Расчет показал, что такое предположение допустимо для квазичастичных возбуждений со спином вниз практически во всем рассматриваемом энергетическом интервале. Однако это не так в случае с квазичастичными возбуждениями со спином вверх. Дело в том, что при энергии $E - E_{\rm F} > -1.0 \, {\rm eV}$ вклады от d- и *s p*-состояний в низкую ПЭС со спином вверх сопоставимы, и, как следствие, наблюдаются значительные расхождения в результатах, что отчетливо видно из рис. 6. На этом рисунке показано, как отношения $\tau_{\uparrow}/\tau_{\downarrow}$, полученные с учетом только *d*-состояний и с использованием полностью экранированного потенциала, соотносятся друг с

Рис. 6. Отношение $\tau_{\uparrow}/\tau_{\downarrow}$, полученное с учетом только *d*-состояний, деленное на соответствующее $\tau_{\uparrow}/\tau_{\downarrow}$, найденное в рамках полного расчета с учетом всех состояний.

Рис. 7. Усредненные по **k** модуль скорости квазичастиц $v_{kn\sigma}$ и средняя длина свободного пробега $\lambda_{kn\sigma}^{e^-e}$. Экспериментальные данные по длине затухания для электронов с разным направлением спина взяты из [7].

другом. Во-первых, сразу заметно практически полное совпадение результатов для *B*2- и ОЦК-FeCo. Во-вторых, видна степень переоценки отношения $\tau_{\uparrow}/\tau_{\downarrow}$ для электронных возбуждений в расчетах с *W*_d. Здесь важно отметить, что в интервале от ~1 и почти до 4 eV эту переоценку можно выразить одним множителем, который близок к двум. Это важно для оценки времен жизни квазичастичных возбуждений с разным направлением спина в более сложных ферромагнитных системах, для которых полный расчет трудно реализовать на практике. В этом случае оценка может быть проведена на основе расчетов, учитывающих только *d*-состояния (см., например, [21]).

Перейдем к анализу средней длины свободного пробега квазичастиц. Прежде всего рассмотрим поведение скорости квазичастиц с разным направлением спина как функции энергии возбуждения. На рис. 7 представлены результаты расчета $v_{\mathbf{k}n\sigma} = |\mathbf{v}_{\mathbf{k}n\sigma}|$, усредненной по **k**. Из рисунка видно, что, как и в случае со спектральным весом квазичастиц, $v_{\mathbf{k}n\uparrow}$ и $v_{\mathbf{k}n\downarrow}$ воспроизводят практически одну и ту же зависимость от $E-E_{\rm F}$, правда, со сдвигом по энергии на величину, задаваемую обменным расщеплением зон, что и обусловливает спиновую асимметрию в скоростях. Эта зависимость характеризуется низкими скоростями в области доминирующего вклада локализованных *d*-состояний в ПЭС и заметно высокими скоростями в том энергетическом интервале, в котором решающую роль в формировании ПЭС играют s p-состояния. Здесь важно отметить, что в результате фактически во всей области дырочных возбуждений скорости $v_{\mathbf{k}n\uparrow}$ и $v_{\mathbf{k}n\downarrow}$ достаточно близки. Это означает, что различия в $\lambda_{\mathbf{k}n\uparrow}^{e^-e^-}$ и $\lambda_{\mathbf{k}n\downarrow}^{e^-e^-}$ в основном будут определяться временами жизни квазичастичных возбуждений с соответствующим направлением спина.

С другой стороны, в области электронных возбуждений заметное различие в значениях усредненных скоростей квазичастиц с разным направлением спина приводит к значительному усилению эффекта, наблюдаемого в отношении $au_{\uparrow}/ au_{\downarrow}$, что отчетливо видно из рис. 7. Таким образом, для рассматриваемых ферромагнетиков GW-приближение предсказывает сильный эффект спинового фильтра, выраженный в многократном превышении длины свободного пробега электронов со спином вверх по отношению к длине свободного пробега электронов со спином вниз. Однако в эксперименте такого превышения не наблюдается, что видно из представленных на рис. 7 результатов по изучению спинзависимого электронного транспорта в пленках Co₈₄Fe₁₆ на GaAs(001) [7]. Если для спина вниз результаты расчета усредненной $\lambda_{\mathbf{k}n|}^{e-e}$ как в *B*2-, так и в ОЦК-FeCo близки к экспериментальным данным и хорошо воспроизводят слабую зависимость от энергии возбуждения, то для спина вверх расхождение существенно. Для анализа наблюдаемого несоответствия теоретических и экспериментальных данных вслед за [7] представим длину затухания, измеряемую в эксперименте, как сумму целого ряда слагаемых: $1/\lambda_{\sigma}^{\exp} = 1/\lambda_{\sigma}^{e\text{-}e} + 1/\lambda_{\sigma}^{\operatorname{ph}} + 1/\lambda_{\sigma}^{\operatorname{sw}} + 1/\lambda_{\sigma}^{el}$, где кроме неупругого электрон-электронного рассеяния $(1/\lambda_{\sigma}^{e^{-e}})$ присутствуют вклады от квазиупругого рассеяния на фононах $(1/\lambda_{\sigma}^{ph})$ и спиновых волнах $(1/\lambda_{\sigma}^{sw})$, а также упругого рассеяния электронов на дефектах и примесях $(1/\lambda_{\sigma}^{el})$. Обратим внимание на два первых слагаемых. Как уже отмечалось выше, GW-приближение не учитывает каналы затухания квазичастичных возбуждений, связанные со спиновыми флуктуациями. Учет последних, как показано в работах [3,22-24] для парамагнитных и ферромагнитных металлов, приводит к сокращению времени жизни квазичастичных возбуждений, а следовательно, и к уменьшению длины свободного

пробега $\lambda_{\sigma}^{e^{-e}}$. Наиболее чувствительна в этом смысле $\lambda_{\uparrow}^{e^{-e}}$ (см., например, [3]). Включение в рассмотрение электрон-фононного рассеяния может привести к появлению вклада $1/\lambda_{\sigma}^{\rm ph}$, зависимость которого от энергии возбуждения практически полностью определяется скоростью квазичастиц. В качестве демонстрации эффекта учета электрон-фононного вклада на рис. 7 для В2-FeCo и ОЦК-Со представлен результат сложения $1/\lambda_{\uparrow}^{e^-e} + 1/\lambda_{\uparrow}^{\rm ph} = v_{\uparrow}(1/\tau_{\uparrow} + \Gamma_{\uparrow}^{\rm ph})$, где использовано $\Gamma^{\rm ph}_{\uparrow}=50\,{
m meV}$, что по порядку величины близко к наблюдаемому в различных металлах уширению спектральных линий, связанному с рассеянием на фононах (см., например, [25,26]). Из рисунка хорошо видно, что в данном случае разница в экспериментальных и теоретических данных резко сокращается. Более того, хорошо воспроизводится поведение длины затухания как функции энергии возбуждения. Отметим, что для электронных возбуждений со спином вниз в силу достаточно больших $1/\tau_{\perp}$ (растет от ~ 160 до ~ 400 meV при изменении энергии возбуждения от 1.0 до 2.0 eV) указанная добавка не приводит к столь сильным изменениям в длине свободного пробега. Значимым тут может оказаться вклад, обусловленный электрон-магнонным рассеянием (см., например, [27]). Относительно вклада упругого рассеяния заметим, что, во-первых, он зависит от характера дефектов и их количества, т.е. от качества исследуемого материала, а во-вторых, согласно, например, работе [28], его участие в формировании спиновой асимметрии у длины затухания минимально.

4. Заключение

В работе в рамках GW-приближения проведен спинполяризованный расчет времени жизни квазичастичных возбуждений в ферромагнитном сплаве FeCo. Рассматривались как упорядоченное состояние FeCo со сверхрешеткой В2, так и разупорядоченное с ОЦК-решеткой. Влияние разупорядочения на время жизни анализировалось в рамках приближения виртуального кристалла. Обнаружено, что разупорядочение влияет в основном на свойства квазичастиц (как электронов, так и дырок) со спинов вниз в небольшом энергетическом интервале, центрированном на уровне Ферми. Показано, что в области электронных возбуждений ярко выражена спиновая асимметрия во временах жизни этих возбуждений. Это во многом обусловлено различиями в плотности электронных состояний со спином вверх и спином вниз в области E_F, возникшими за счет обменного расщепления энергетических зон. В количественном отношении это приводит к более чем шестикратному увеличению времени жизни электронных возбуждений со спином вверх по сравнению с электронными возбуждениями со спином вниз. Для анализа сплавного эффекта были рассчитаны времена жизни квазичастиц в Fe и Co в ОЦК-решетке с параметром как у B2-FeCo. Расчет показал, что в области электронных возбуждений FeCo

близок к ОЦК-Со, тогда как в области дырочных возбуждений он не сводим ни к железу, ни к кобальту и характеризуется более длительными временами τ_{\uparrow} и τ_{\downarrow} , чем его составляющие. При этом установлено, что в энергетическом интервале $|E-E_{\rm F}| \lesssim 1.5\,{\rm eV}$ отношение $\tau_{\uparrow}/\tau_{\downarrow}$ в ОЦК-кобальте заметно больше, чем в FeCo. В работе также показано, что использование в GW-расчетах кулоновского потенциала, экранированного лишь локализованными *d*-электронами, приводит к существеннй переоценке отношения $\tau_{\uparrow}/\tau_{\perp}$ для электронных возбуждений из-за двукратного (в среднем) увеличения τ_{\uparrow} по сравнению с результатами расчета, использующего полностью экранированный кулоновский потенциал. Причиной такой переоценки является тот факт, что для спина вверх *d*-зона "уходит" под уровень Ферми, выше которого располагаются состояния преимущественно s p-типа. Тем не менее, на наш взгляд, для полуколичественного описания $\tau_{\uparrow}/\tau_{\parallel}$ как функции энергии возбуждения в сложных ферромагнитных системах можно использовать расчет, основанный только на *d*-состояниях, но с учетом двукратного завышения τ_{\uparrow} . В работе также дана оценка средней длины свободного пробега квазичастиц. Установлено, что наблюдаемый в эксперименте эффект спинового фильтра для возбужденных электронов обусловлен спиновой асимметрией как во временах жизни, так и в скоростях квазичастиц. Показано, что для согласия теоретических результатов с экспериментальными данными по длине затухания необходимо учитывать как влияние спиновых флуктуаций на среднюю длину свободного пробега, связанную с неупругим электронэлектронным рассеянием, так и вклад, обусловленный квазиупругим электрон-фононным рассеянием.

Список литературы

- [1] R. Knorren, K.H. Bennemann, R. Burgermeister, M. Aeschlimann. Phys. Rev. B **61**, 9427 (2000).
- [2] E. Zarate, P. Apell, P.M. Echenique. Phys. Rev. B 60, 2326 (1999).
- [3] V.P. Zhukov, E.V. Chulkov, P.M. Echenique. Phys. Rev. B 73, 125 105 (2006).
- [4] I. Appelbaum, B. Huang, D. Monsma. Nature 447, 295 (2007).
- [5] I. Žutić, J. Fabian, S.C. Erwin. J. Phys.: Cond. Matter 19, 165 219 (2007).
- [6] T. Banerjee, E. Haq, M.H. Siekman, J.C. Lodder, R. Jansen. Phys. Rev. Lett. 94, 027 204 (2005).
- [7] S. van Dijken, X. Jiang, S.S.P. Parkin. Phys. Rev. B 66, 094 417 (2002).
- [8] И.А. Нечаев, В.П. Жуков, Е.В. Чулков. ФТТ 49, 1729 (2007).
- [9] G.F. Giuliani, G. Vignale. Quantum theory of the electron liquid. Cambridge University Press, Cambridge (2005). 777 p.
- [10] P. Eckerlin, H. Kandler. In: Numerical data and functional relationships in sciecne and technology. Landolt-Börnstein. New series / Eds K.-H. Hellwege, A.M. Hellwege. Springer, Berlin (1971). Group III. V. 6. P. 428.

- [11] P. Söderlind, O. Eriksson, B. Johansson, R.C. Albers, A.M. Boring, Phys. Rev. B 45, 12 911 (1992).
- [12] H. Kino, F. Aryasetiawan, I. Solovyev, T. Miyake, T. Ohno, K. Terakura. Physica B 329–333, 858 (2003).
- [13] Г. Эренрейх, Л. Шварц. Электронная теория сплавов. Мир, М. (1979). 200 с.
- [14] I. Turek, J. Kudrnovský, V. Drchal, P. Weinberger. Phys. Rev. B 49, 3352 (1994).
- [15] D.J. Singh. Phys. Rev. B 45, 2258 (1992).
- [16] L.V. Pourovskii, A.V. Ruban, L. Vitos, H. Ebert, B. Johansson, I.A. Abrikosov. Phys. Rev. B 71, 094415 (2005).
- [17] A.Y. Liu, D.J. Singh. Phys. Rev. B 46, 11145 (1992).
- [18] A. Díaz-Ortiz, R. Drautz, M. Fähnle, H. Dosch, J.M. Sanchez. Phys. Rev. B 73, 224 208 (2006).
- [19] J.J. Quinn. Phys. Rev. 126, 1453 (1962).
- [20] N.E. Zein, V.P. Antropov. Phys. Rev. Lett. 89, 126402 (2002).
- [21] I.A. Nechaev, E.V. Chulkov, P.M. Echenique. Phys. Rev. B 76, 245 125 (2007).
- [22] V.P. Zhukov, E.V. Chulkov, P.M. Echenique. Phys. Rev. Lett. 93, 096 401 (2004).
- [23] I.A. Nechaev, E.V. Chulkov. Phys. Rev. B 71, 115104 (2005);
 Phys. Rev. B 73, 165112 (2006).
- [24] A. Mönnich, J. Lange, M. Bauer, M. Aeschlimann, I.A. Nechaev, V.P. Zhukov, P.M. Echenique, E.V. Chulkov. Phys. Rev. B 74, 035 102 (2006).
- [25] E.V. Chulkov, A.G. Borisov, J.P. Gauyacq, D. Sanchez-Portal, V.M. Silkin, V.P. Zhukov, P.M. Echenique. Chem. Rev. 106, 4160 (2006).
- [26] I.Yu. Sklyadneva, A. Leonardo, P.M. Echenique, S.V. Eremeev, E.V. Chulkov. J. Phys.: Cond. Matter 18, 7923 (2006).
- [27] L. Kleinman. Phys. Rev. B 17, 3666 (1978).
- [28] E. Vescovo, C. Carbone, U. Alkemper, O. Rader, T. Kachel, W. Gudat, W. Eberhardt. Phys. Rev. B 52, 13 497 (1995).