Феноменологическое описание тонких пленок SrTiO₃

© В.Б. Широков, Ю.И. Юзюк, В.В. Леманов*

Южный федеральный университет, Ростов-на-Дону, Россия * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург, Россия

E-mail: shirokov-Vb@rabler.ru

(Поступила в Редакцию 30 июля 2008 г. В окончательной Редакции 6 октября 2008 г.)

> Проведено вычисление констант феноменологического потенциала SrTiO₃ с учетом последних экспериментальных данных. По сравнению с ранее приведенными значениями константы α_{11} , α_{12} , t_{44} изменены более чем на порядок. Рассчитаны фазовые T-P-диаграммы при действии одноосных — [001] и [110] — нагрузок. Построена фазовая диаграмма температура–деформация (misfit strain) тонкой пленки SrTiO₃, на которой чисто сегнетоэлектрические фазы существуют при низких температурах.

Работа выполнена при поддержке РФФИ (грант № 06-02-16271).

PACS: 64.60.Kw, 64.70.Kb, 77.65.Ly, 77.80.Bh

1. Введение

Титанат стронция SrTiO₃ (ST) известен как квантовый параэлектрик, в котором начинающийся сегнетоэлектрический фазовый переход так и не происходит вплоть до температуры 0.035 К [1]. При температуре вблизи T = 106 К происходит структурный фазовый переход с мультипликацией ячейки, обусловленный антифазными вращениями октаэдров TiO₆ [2,3]. Первое построение феноменологической теории SrTiO₃, учитывающее сегнетоэлектрические свойства, проведено в [4], где на основе изучения поведения кристалла при одноосном внешнем давлении и других известных к тому времени экспериментов было найдено большинство констант феноменологического потенциала. В работе [5] описаны фазовые состояния тонкой пленки SrTiO₃ на основе феноменологической модели [4] с найденным полным набором констант потенциала. В [6] использован потенциал с немного измененными (по сравнению с [5]) константами. В работе [7] проведен анализ фазовых переходов в пленках SrTiO₃ для разных наборов констант потенциала [4], взятых из различных работ. В [8] для согласования с экспериментальной фазовой диаграммой твердого раствора Ba_xSr_(1-x)TiO₃ авторы изменили значения констант потенциала SrTiO₃. Причем константы при р⁴ изменены на порядок по сравнению с [6].

В настоящей работе для феноменологической модели четвертой степени [4] проводится вычисление констант потенциала SrTiO₃ на основе экспериментальных данных, ранее не использовавшихся для нахождения констант. С новыми константами теоретически изучены фазовые T-P-диаграммы при действии одноосной нагрузки. Вычислено поведение мягких мод при одноосной нагрузке при низких температурах. На основе полученного потенциала проводится описание фазовых переходов в тонких пленках $SrTiO_3$.

2. Вычисление констант феноменологического потенциала

Группа симметрии кристалла SrTiO₃ при температуре выше 106 К Pm3m (O_h^1). Понижение симметрии при фазовом переходе 106 К описывается трехкомпонентным параметром порядка (φ), преобразующимся по представлениям R_{25} [3] или $\tau_8(k_{13})$ по Ковалеву [9] в *R*-точке ($k_{13} = (1/2, 1/2, 1/2)$) зоны Бриллюэна. Мы выбираем систему отсчета, в которой атом титана находится в центре кубической ячейки, а атом стронция — в начале координат. При выборе начала координат на атоме титана представление меняется на $R'_{15}(\tau_9(k_{13}))$. Второй параметр порядка (ПП) поляризация (p) — является трехкомпонентным ПП, преобразующимся по неприводимому представлению F_{1u} центра зоны Бриллюэна.

Построение феноменологической модели фазовых переходов с такими двумя параметрами порядка будем основывать на потенциале Гиббса четвертой степени, впервые рассмотренном в [4],

$$\Phi = \beta_1(\varphi_1^2 + \varphi_2^2 + \varphi_3^2) + \beta_{11}(\varphi_1^4 + \varphi_2^4 + \varphi_3^4) + \beta_{12}(\varphi_1^2\varphi_2^2 + \varphi_1^2\varphi_3^2 + \varphi_2^2\varphi_3^2) + \alpha_1(p_1^2 + p_2^2 + p_3^2) + \alpha_{11}(p_1^4 + p_2^4 + p_3^4) + \alpha_{12}(p_1^2p_2^2 + p_1^2p_3^2 + p_2^2p_3^2) - t_{11}(\varphi_1^2p_1^2 + \varphi_2^2p_2^2 + \varphi_3^2p_3^2) - t_{12}[\varphi_1^2(p_2^2 + p_3^2) + \varphi_2^2(p_1^2 + p_3^2) + \varphi_3^2(p_1^2 + p_2^2)] - t_{44}(\varphi_2\varphi_3p_2p_3 + \varphi_1\varphi_3p_1p_3 + \varphi_1\varphi_2p_1p_2) + \Phi_t, \quad (1)$$

где упругая часть потенциала равна

$$\begin{split} \Phi_t &= -R_{11}(t_1\varphi_1^2 + t_2\varphi_2^2 + t_3\varphi_3^2) \\ &- R_{44}(t_4\varphi_2\varphi_3 + t_5\varphi_1\varphi_3 + t_6\varphi_1\varphi_2) - R_{12}(t_1(\varphi_2^2 + \varphi_3^2)) \\ &+ t_2(\varphi_1^2 + \varphi_3^2) + t_3(\varphi_1^2 + \varphi_2^2)) - Q_{11}(t_1p_1^2 + t_2p_2^2 + t_3p_3^2) \\ &- Q_{44}(t_4p_2p_3 + t_5p_1p_3 + t_6p_1p_2) - Q_{12}(t_1(p_2^2 + p_3^2)) \\ &+ t_2(p_1^2 + p_3^2) + t_3(p_1^2 + p_2^2)) - \frac{1}{2}s_{11}(t_1^2 + t_2^2 + t_3^2) \\ &- \frac{1}{2}s_{44}(t_4^2 + t_5^2 + t_6^2) - s_{12}(t_1t_2 + t_1t_3 + t_2t_3) \\ &- \lambda T(t_1 + t_2 + t_3), \end{split}$$

где λ — коэффициент линейного расширения. Проведем вычисление коэффициентов потенциала (1) на основе экспериментальных данных для монокристалла ST. Прежде всего найдем коэффициенты β потенциала. Коэффициент β_1 возьмем в том же виде, что и в [5]; он учитывает особенности температурного поведения при низких температурах

$$\beta_1 = B\left[\operatorname{cth}\left(\frac{b}{T}\right) - \operatorname{cth}\left(\frac{b}{T_a}\right)\right],\tag{3}$$

где T_a — температура перехода. Константы *B*, *b*, β_{11} и β_{12} найдем, аппроксимируя температурное поведение мягких мод для ПП φ из [10,11] при условии (нормировке), что значение ПП $\varphi_0 = 0.69 \cdot 10^{-11}$ m при T = 4 K [4], что соответствует повороту октаэдров на угол 2°. Аппроксимация дает следующий результат: $B = 1.038 \cdot 10^{28}$ J/m⁵, b = 43.8 K, $\beta_{11} = 1.69 \cdot 10^{50}$ J/m⁷, $\beta_{12} = 4.07 \cdot 10^{50}$ J/m⁷. На рис. 1 приведены полученная температурная зависимость мягких мод для ПП φ и данные экспериментов [10,11]. Для сравнения там же показаны соответствующие зависимости, определяемые константами из [5] и [12] с константой *B*, найденной при той же нормировке для ПП [8].

Константа $\alpha_1 = 4.05 \cdot 10^7 \left[\operatorname{cth}\left(\frac{54}{T}\right) - \operatorname{cth}\left(\frac{54}{30}\right) \right] \frac{J \cdot m}{C^2}$ из [5] дает значение относительной диэлектрической проницаемости $\varepsilon = 306$ при T = 300 К. При температуре T = 4 К в низкосимметричной фазе $\varepsilon_a = 41\,900, \ \varepsilon_c = 9380$ [4]. С учетом найденных ранее β -констант отсюда получим значения $t_{11} = -1.74 \cdot 10^{29}, t_{12} = -0.76 \cdot 10^{29}$ в единицах J/C²m. Они практически не отличаются от значений, найденных в [6].

Рассмотрим аппроксимацию электрострикционных констант по результатам измерения изменения диэлектрической проницаемости при одноосном давлении при температуре T = 4 K [4]. Так как

$$Q_{44} = \frac{1}{\varepsilon_0} \left(\frac{\partial}{\partial P} \left(\frac{1}{\varepsilon_{110}} \right) - \frac{\partial}{\partial P} \left(\frac{1}{\varepsilon_{1\bar{1}0}} \right) \right),$$

то значение константы Q_{44} не зависит от значений других констант. Нахождение же констант Q_{11} и Q_{12} связано

Рис. 1. Температурная зависимость поведения мягких мод SrTiO₃. *1* — данные настоящей работы, *2* — аппроксимация [12] с нормировкой из [8], *3* — [5]. I — эксперимент [10], II — эксперимент [11].

со значениями других констант потенциала, найденных ранее. Из измерений [4] для ε_{110} , $\varepsilon_{1\overline{10}}$ и ε_{001} (см. график для обратных восприимчивостей в [4]) находим $Q_{44} = 0.019, \ Q_{11} = 0.0496, \ Q_{12} = -0.0131$ в единицах m⁴/C². Эти значения близки к приведенным в [6]. Однако заметим, что пологий минимум на обратной восприимчивости для ε_{001} приводит к значительной погрешности в определении точки фазового перехода по давлению, а следовательно, и к большой погрешности в определении констант Q_{11} и Q_{12} . Если находить константы из [4] по давлению вдоль тетрагонального направления, то они будут равны $Q_{11} = 0.0247, Q_{12} = -0.0102$, что заметно отличается от значений, полученных из эксперимента по давлению вдоль [110]. В настоящей работе мы выбираем значения электрострикционных констант, найденные из зависимости обратной восприимчивости от давления вдоль направления [110].

Константы α_{11} и α_{12} определим из экспериментов по измерению восприимчивости в зависимости от приложенного внешнего электрического поля вдоль направлений [001] и [110]. Ввиду больших значений диэлектрической проницаемости мы не будем отличать ее от восприимчивости. Восприимчивость находится из уравнения $\frac{1}{\chi} = \frac{\partial^2 \Phi_E}{\partial p^2}$ при условии, что $\frac{\partial \Phi_E}{\partial p} = 0$, где $\Phi_E = \Phi - \mathbf{pE}$, а потенциал Гиббса Φ определен выражением (1). Из эксперимента [13] для электрического поля вдоль [001] получаем отношение $\frac{\varepsilon_{E=0}}{\varepsilon_{E=20 \text{ kV/cm}}} = 8.6$. Это дает значение константы $\alpha_{11} = 1.04 \cdot 10^8 \text{ J} \cdot \text{m}^5/\text{C}^4$. Из эксперимента [14] для поля вдоль [110] имеем $\frac{\varepsilon_{E=0}}{\varepsilon_{E=5 \text{ kV/cm}}} = 3.7$. Это значение с учетом найденной величины α_{11} дает константу $\alpha_{12} = 0.746 \cdot 10^8 \text{ J} \cdot \text{m}^5/\text{C}^4$. Полученные величины более чем на порядок отличаются от значений, приве-

Таблица 1. Значения констант потенциала Гиббса SrTiO₃ при $\beta_1 = 1.036 \cdot 10^{28} [\operatorname{cth}(43.8/T) - \operatorname{cth}(43.8/106)] \text{ J/m}^5$, $\alpha_1 = 4.05 \cdot 10^7 [\operatorname{cth}(54/T) - \operatorname{cth}(54/30)] \text{ J} \cdot \text{m/C}^2$

Константа	Значение
$\beta_{11},$	1.69 *
$\beta_{12},$	4.07
$\begin{array}{c} 10 \text{J/m} \\ \alpha_{11}, \\ 108 \text{ J} 5 \ \text{G}^4 \end{array}$	1.04
$\frac{\alpha_{12}}{10^8 \text{ J} \cdot \text{m}^3/\text{C}^4}$	0.746
$10^{\circ} \text{ J} \cdot \text{m}^{\circ}/\text{C}^{\circ}$	-1.74 *
$10^{29} \text{ J/C}^2 \cdot \text{m}$	-0.75^{*}
$10^{29} \text{ J/C}^2 \cdot \text{m}$	0.1
$10^{29} \text{ J/C}^2 \cdot \text{m}$ $R_{11},$	0.87 *
$10^{19} \mathrm{m}^{-2}$ R_{12} ,	-0.78 *
$10^{19} \mathrm{m}^{-2}$ $R_{44},$	-1.84*
$10^{19} \mathrm{m}^{-2}$ Q_{11} ,	4.96
$10^{-2} \mathrm{m}^4/\mathrm{C}^2$ Q_{12} ,	-1.31
$10^{-2} \mathrm{m}^4/\mathrm{C}^2$ Q_{44} ,	1.9
$10^{-2} \mathrm{m}^4/\mathrm{C}^2$	3.52 *
$10^{-12} \text{ m}^3/\text{J}$	-0.85*
$10^{-12} \text{ m}^3/\text{J}$	7.87 *
$10^{-12} \text{ m}^3/\text{J}$	

* Константы, совпадающие с [6].

денных в [6]: $\alpha_{11} = 1.7 \cdot 10^9$, $\alpha_{12} = 1.37 \cdot 10^9$ в единицах $J \cdot m^5/C^4$.

Оставшуюся константу t_{44} потенциала (1) оценим из эксперимента по давлению при низких температурах [4]. Согласно [4], при одноосном давлении вдоль направления [010] происходит фазовый переход в сегнетоэлектрическую фазу симметрии C_{2v} . Происходящие изменения симметрии и трансформацию мод можно охарактеризовать следующей корреляционной диаграммой:

$$\frac{D_{4h} \quad D_{2h} \quad C_{2v}}{A_{2u} \rightarrow B_{1u} \rightarrow B_1(\omega_1)}$$
$$E_g \rightarrow \begin{cases} B_{2g} \rightarrow B_1(\omega_2) \\ B_{3g} \rightarrow A_2. \end{cases}$$

Мода A_{2u} и одна из E_g -мод (B_{2g}) , расщепленных под действием давления, становятся одинаковой симметрии (B_1) и начинают взаимодействовать. Из величины расщепления этих мод (ω_1, ω_2) можно найти константу t_{44} [4]. Оценка по [4] дает расщепление $\frac{\omega_1^2 - \omega_2^2}{\omega_1^2} \Big|_{P=0.4 \text{ GPa}} = 0.48$. Однако с таким расщеплением константу t_{44} подобрать невозможно — частоты становятся комплексными. Минимальное значение расщепления можно получить равным 0.62 при $t_{44} = 0.1 \cdot 10^{29} \text{ J/C}^2 \cdot \text{m}$. В работе [6] константа $t_{44} = 5.85 \cdot 10^{29} \text{ J/C}^2 \cdot \text{m}$ дает расщепление, равное 0.82 (вместе с другими константами из [6]). Значения полученных нами констант приведены в табл. 1. Значения констант стрикции R и упругих податливостей взяты из [6].

3. Действие одноосного давления

На основе полученного потенциала нами рассчитаны фазовые диаграммы при действии одноосного давления вдоль направлений [001] и [110]. На рис. 2 приведена Т-Р-диаграмма для давления вдоль [001]. При малых давлениях ниже температуры перехода из высокосимметричной фазы кристалл находится в двухфазном состоянии. Домены (00 ϕ 000), (0 ϕ 0 000) и (\$\varphi 00000) под действием одноосного давления вдоль кубического направления теперь имеют разные энергии. Более выгодное состояние соответствует фазе (доменам) $(\varphi 00\,000), (0\varphi 0\,000).$ Вторая фаза, соответствующая домену ($00\phi 000$), метастабильна, так как имеет более высокую энергию. При повышении давления образец монодоменизируется. При низких температурах, как это видно из рис. 2, и стабильная, и метастабильная фазы претерпевают сегнетоэлектрические фазовые переходы, как показано на рис. 3. Область метастабильной фазы ограничена. При дальнейшем повышении давления об-

Рис. 2. Фазовая T-P-диаграмма кристалла SrTiO₃ при одноосном давлении вдоль направления [001]. Тонкие линии (сплошные и штриховые) ограничивают область существования метастабильных фаз. Штриховые — линии переходов второго рода: тонкие — для метастабильных фаз, жирные — для стабильных.

Рис. 3. Зависимость квадратов частот SrTiO₃ от величины одноосного давления вдоль направления [001] при T = 4 К. Жирные линии (сплошные и штриховые) — частоты стабильных фаз, тонкие (сплошные и штриховые) — метастабильных. Штриховые линии (тонкие и жирные) — сегнетоактивные моды. Сплошные линии (тонкие и жирные) — ротационные моды. Вертикальные линии соответствуют давлениям фазовых переходов.

разец переходит в стабильную фазу и претерпевает еще один переход в фазу ($\varphi_1 \varphi_2 0 p_1 p_2 0$) с появлением второй компоненты поляризации и ротационной моды.

Изучение поведения частот мягких мод, связанных с изучаемыми параметрами порядка, проводилось на основе уравнений для малых колебаний в устойчивом положении равновесия

$$m_i\omega^2 = \sum_k \frac{\partial^2 \Phi}{\partial x_i \partial x_k},$$

где компоненты вектора *x* определены как $\mathbf{x} = (\varphi_1, \varphi_2, \varphi_3, p_1, p_2, p_3), \Phi$ — потенциал (1), $m_{\varphi} = 0.897 \cdot 10^3 \text{ kg/m}^3$ [4], а величина m_p вычислялась из условия $m_p \Omega^2 = \frac{\partial^2 \Phi}{\partial p^2} = \frac{1}{\varepsilon \varepsilon_0}$ при частоте Ω для E_g -моды, равной 16.5 сm⁻¹ при T = 4 К и $\varepsilon = 41900$.

На рис. З показано поведение квадратов частот мягких мод при температуре T = 4 К под действием одноосного давления. Жирные линии соответствуют частотам устойчивой фазы, тонкие — метастабильным. Хорошо видны взаимодействующие расталкивающиеся моды. Отметим близко расположенные фазовые переходы для устойчивого и метастабильного доменов. Это будет вызывать размазанность фазового перехода вблизи $P \sim 0.1$ GPa при исследовании по спектрам мягких мод.

На рис. 4 приведена *T*-*P*-диаграмма для давления вдоль направления [110]. Здесь также ниже температуры перехода ненагруженного образца присутствуют две фазы. Одна наиболее устойчивая — (00 φ 000) — обладает

меньшим значением энергии. Эта фаза впоследствии переходит в сегнетоэлектрическую с появлением поляризации вдоль направления, свободного от нагрузки: последовательность $1 \rightarrow 6$ на рис. 4. Вторая фаза (два других домена) — ($\varphi_1\varphi_20000$) — обладает более высоким значением энергии. Эта фаза при понижении температуры и увеличении давления претерпевает изменения, как показано на рис. 4. При низких температурах и давлении более 0.1 GPa эти домены переходят в сегнетоэлектрическое состояние: последовательность фаз $2 \rightarrow 3 \rightarrow 5$ на рис. 4. При повышении давления разность энергии между этими фазами (доменами) уменьшается и

Рис. 4. Фазовая T-P-диаграмма кристалла SrTiO₃ при одноосном давлении вдоль направления [110]. Тонкие сплошные линии ограничивают область существования метастабильных фаз. Штриховые — линии переходов второго рода: тонкие для метастабильных фаз, жирные — для стабильных.

Рис. 5. Зависимость энергий двух устойчивых фаз (см. рис. 4) от одноосного давления вдоль направления [110] при температуре T = 4 К. Жирная и тонкая линии — относительные энергии стабильной и метастабильной фаз соответственно, вертикальные линии — границы фаз.

Рис. 6. Зависимость квадратов частот SrTiO₃ от величины одноосного давления вдоль направления [110] при T = 4 К. Жирные линии (сплошные и штриховые) — частоты стабильных фаз, тонкие (сплошные и штриховые) — метастабильных. Штриховые (тонкие и жирные) — сегнетоактивные моды. Сплошные линии (тонкие и жирные) — ротационные моды.

сравнивается при давлении порядка 1 GPa, как показано на рис. 5.

На рис. 6 показано поведение квадратов частот мягких мод под действием давления вдоль [110]. Жирные линии соответствуют стабильной фазе (домену), тонкие — метастабильной. Сплошная и штриховая линии — частоты сегнетоэлектрических и ротационных мягких мод соответственно. Как видно из рис. 6, экспериментальное исследование спектров осложняется присутствием метастабильного домена.

4. Фазовая диаграмма тонких пленок

Феноменологическая теория тонких пленок SrTiO₃ строится в соответствии с [15] (см. также [16]). Будем считать, что пленка нанесена на поверхность (001) кубической подложки. Деформации, испытываемые пленкой при изменении температуры, считаем однородными, а внешнее поле — отсутствующим, т. е. пленка закорочена. Для (1) это формулируется в виде условий

$$\begin{cases} u_s = -\frac{\partial \Phi}{\partial t_1} = -\frac{\partial \Phi}{\partial t_2}, \\ \frac{\partial \Phi}{\partial t_6} = 0, \\ t_3 = 0, \quad t_4 = 0, \quad t_5 = 0. \end{cases}$$
(4)

Здесь u_s — деформация пленки, задаваемая подложкой. Исключая линейное расширение пленки, введем деформацию несоответствия (misfit strain) $u_m = u_s - \lambda T$. В результате получим потенциал тонкой пленки [15]. Тетрагональное искажение, обусловленное действием подложки, меняет симметрию параметра порядка, причем симметрия искажена, даже если $u_m = 0$. Это связано с перенормировкой констант четвертой степени потенциала в задаче для пленки [15]. Полный список низкосимметричных фаз в задаче с такой симметрией содержит 33 низкосимметричные фазы, список которых приведен в табл. 2. Отметим, что в [5] фаза 15 ($\varphi \phi 0 pp0$) считается эквивалентной фазе 17 ($\varphi \phi 0 p\bar{p}0$), а в [7] фаза 17 отсутствует. Однако для данного кристалла это несущественно, так как фаза 17 неустойчива.

Фазовая диаграмма пленки SrTiO₃ для потенциала с константами из табл. 1 приведена на рис. 7, 8. Для малых деформаций полученная фазовая диаграмма близка к диаграмме [5]. В области положительных деформаций появилась новая фаза $32 - (\varphi_1 \varphi_2 0 p_1 p_2 0)$. Все шесть фаз в этой области сходятся в одной мультифазной точке T_2 (рис. 7) и граничат между собой по линиям пере-

Рис. 7. Фазовая диаграмма температуры–деформация несоответствия тонкой пленки SrTiO₃.

Рис. 8. Детализация фазовой диаграммы тонкой пленки SrTiO₃ при низких температурах.

Номер фазы $\Pi\Pi \ \varphi \oplus \mathbf{p}$	$\Pi\Pi = \sigma \oplus \mathbf{n}$	Cup is computer theory	Обозначение	
	$\min \varphi \oplus \mathbf{p}$	Симметрия фазы	по [5,15]	по [7]
0	(000 000)	$D_{4h}^1 = P4/mmm(N123)$	HT	T^{P}
1	(00000p)	$C_{4v}^1 = P4mm(N99)$	FTI, c	T_1^F
2	(0000p0)	$C_{2v}^1 = Pmm2(N25)$	а	O_1^F
3	(000 pp0)	$C_{2v}^{14} = Amm2(N38)$	FOI, aa	O_2^F
4	$(000 p_1 p_1 p_2)$	$C_s^3 = Cm(N8)$	r	
5	$(000 p_1 0 p_2)$	$C_s^1 = Pm(\rm N6)$	ac	
6	$(000 p_1 p_2 0)$	$C_s^1 = Pm(\rm N6)$		
7	$(000 p_1 p_2 p_3)$	$C_1 = P1(N1)$		
8	$(00 \varphi \ 000)$	$D_{4h}^{18} = I4/mcm(N140)$	ST	T^{S}
9	$(\varphi 00 000)$	$D_{2h}^{23} = Fmmm(N69)$	SO	O_1^S
10	$(\varphi \varphi 0000)$	$D_{2h}^{28} = Imcm(N74)$		O_2^3
11	$(\varphi_1 \varphi_1 \varphi_2 000)$	$C_{2h}^{0} = C2/c$ (N15)		
12	$(\varphi_1 0 \varphi_2 0 0 0)$	$C_{2h}^3 = C2/m(N12)$		
13	$(\varphi_1 \varphi_2 0\ 000)$	$C_{2h}^{3} = C2/m(N12)$		
14	$(\varphi_1 \varphi_2 \varphi_3 \ 000)$	$C_i = Pi(N2)$		
15	$(\varphi \varphi 0 p p 0)$	$C_{2v}^{22} = Ima2(\mathrm{N46})$	FOIV	O_6^F
16	(00arphi00p)	$C_{4v}^{10} = I4cm(N108)$	FTII	T_2^F
17	$(\varphi \varphi 0 p \bar{p} 0)$	$C_{2v}^{20} = Imm2(\text{N44})$	FOIV	_
18	$(00\varphi \ pp0)$	$C_{2v}^{22} = Ima2(N46)$	FOIII	O_5^F
19	$(\varphi 00 \ p 00)$	$C_{2v}^{18} = Fmm2(N42)$		_
20	$(00\varphi0p0)$	$C_{2v}^{18} = Fmm2(N42)$		O_4^F
21	$(\varphi 00 0p0)$	$C_{2v}^{18} = Fmm2(\text{N42})$	FOII	O_3^F
22	$(\varphi 00 \ 00 p)$	$C_{2v}^{18} = Fmm2(N42)$		
23	$(\varphi \varphi 0 00p)$	$C_{2v}^{22} = Ima2(N46)$		
24	$(00\varphi p_2p_20)$	$C_s^3 = Cm(N8)$		
25	$(0\varphi_1\varphi_2 p 0 0)$	$C_{2}^{3} = C2(N5)$		
26	$(\varphi - \varphi 0 p_1 p_1 p_2)$	$C_s^s = Cm(N8)$		
27	$(\varphi 00 0 p_1 p_2)$	$C_s^s = Cm(N8)$		
28	$(\varphi_1 \varphi_2 0 00p)$	$C_2^3 = C2(N5)$		
29	$(\varphi_1 \varphi_1 \varphi_2 p \bar{p} 0)$	$C_{2}^{2} = C2(N5)$		
30	$(\varphi_1\varphi_1\varphi_2 p_1p_1p_2)$	$C_s^{*} = C_c(N9)$		
31	$(0\varphi_1\varphi_2 0p_1p_2)$	$C_s^{\circ} = Cm(N8)$		
32	$(\varphi_1\varphi_20p_1p_20)$	$C_s = Cm(N8)$		
33	$(\varphi_1\varphi_2\varphi_3 p_1p_2p_3)$	$C_1 = P1(N1)$		l

Таблица 2. Полный список низкосимметричных фаз, допустимых симметрией для ПП $\phi \oplus \mathbf{p}$ при тетрагональном искажении, обусловленном действием (001)-кубической подложки на тонкую пленку SrTiO₃ (для всех фаз с ненулевым ПП ϕ объем примитивной ячейки в 2 раза больше объема примитивной ячейки высокосимметричной фазы)

ходов второго рода. Область существования планарной сегнетоэлектрической фазы 3 — (000 pp0) значительно расширилась. Эта фаза теперь устойчива вплоть до температур T = 0. В области отрицательных деформаций сегнетоэлектрическая фаза 1 — $(000\,00p)$ — с направлением поляризации перпендикулярно плоскости подложки теперь существует только в области низких температур.

5. Обсуждение результатов

Полученные константы потенциала четвертой степени феноменологической теории близки к приведенным в [5], за исключением трех (α_{11}, α_{12} и t_{44}), которые более

чем на порядок меньше. Такой же порядок величины констант α_{11} , α_{12} был получен в [8] при согласовании теоретической фазовой диаграммы твердых растворов $Ba_xSr_{1-x}TiO_3$ с экспериментальной диаграммой. Отметим, что такой же порядок величины этих констант наблюдается в BaTiO₃ для потенциала как шестой, так и восьмой степени [17].

В настоящей работе мы использовали электрострикционные константы Q_{ij} , найденные из эксперимента по давлению вдоль [110] [4]. При вычислении констант из данных той же работы, но для давления вдоль [001], как отмечено выше, значения заметно различаются, однако причина этого обстоятельства неясна. Либо используемая модель недостаточна для полноты описания электроупругого эксперимента, либо сказывается влияние многофазности. Так, в [4] отмечено, что для монодоменизации не было предпринято никаких попыток. Как видно из фазовых диаграмм, приведенных на рис. 2, 4, кристалл SrTiO₃ может находиться в двухфазном состоянии, если при низких температурах начинать двигаться от нулевых давлений. В монодоменное состояние можно перейти, если проходить высокотемпературный фазовый переход под действием небольшой одноосной нагрузки, как это следует из рис. 2 и 4.

На фазовой диаграмме тонкой пленки в области положительных деформаций (и_m > 0, растягивающая подложка) чисто сегнетоэлектрическое состояние с поляризацией в плоскости пленки доходит в отличие от [5] до нулевых температур. Здесь присутствует многофазная точка T_2 (рис. 7,8), к которой подходят шесть фаз. Противоречий с правилом фаз Гиббса здесь нет при фазовых переходах второго рода кристалл в любой точке, включая точку фазового перехода, находится в однофазном состоянии. Дополнительно к [5] в этой области появилась новая фаза низкой симметрии 32 — $(\varphi_1 \varphi_2 0 p_1 p_2 0)$, граничащая с близлежащими фазами по линиям переходов второго рода. Сегнетоэлектрическая пленка SrTiO₃ в этой области синтезирована с $u_m \sim 1\%$ на подложке DyScO₃ в [18]. Если принять во внимание частотную зависимость диэлектрической восприимчивости [19], то это согласуется с полученной фазовой диаграммой (см. также [7]).

В области отрицательных деформаций ($u_m < 0$, сжимающая подложка) при низких температурах и деформациях более 1% пленка SrTiO₃ находится в сегнетоэлектрическом состоянии с поляризацией, направленной по нормали к плоскости пленки.

Обратим также внимание на область малых деформаций и низких температур (рис. 8). Если двигаться по температуре при фиксированной деформации, то здесь имеются два (слева и справа от нулевого значения u_m) фазовых перехода второго рода. Эти переходы могут являться возможной причиной периодически появляющихся сообщений о нахождении низкотемпературных переходов в SrTiO₃. Так, например, если не предпринять специальных мер по предотвращению сцепления держателя образца и пластины кристалла при низких температурах, то это неизбежно приведет к фазовому переходу при изменении температуры независимо от материала держателя.

Список литературы

- [1] K.A. Müller, H. Burkhard. Phys. Rev. B 19, 3593 (1979).
- [2] K.A. Müller, W. Berlinger, F. Wagner. Phys. Rev. Lett. 21, 814 (1968).
- [3] H. Thomas, K.A. Müller. Phys. Rev. Lett. 21, 1256 (1968).
- [4] H. Uwe, T. Sakudo. Phys. Rev. B 13, 271 (1976).
- [5] N.A. Pertsev, A.K. Tagantsev, N. Setter. Phys. Rev. B 61, R 825 (2000); Phys. Rev. B 65, 219 901 (2002) [Erratum].

- [6] A.K. Tagantsev, E. Courtens, L. Arzel. Phys. Rev. B 64, 224 107 (2001).
- [7] Y.L. Li, S. Choudhury, J.H. Haeni, M.D. Biegalski, A. Vasudevarao, A. Sharan, H.Z. Ma, J. Levy, Venkatraman Gopalan, S. Trolier-McKinstry, D.G. Schlom, Q.X. Jia, L.Q. Chen. Phys. Rev. B 73, 184 112 (2006).
- [8] V.B. Shirokov, V.I. Torgasev, A.A. Bakirov, V.V. Lemanov. Phys. Rev. B 73, 104 116 (2006).
- [9] О.В. Ковалев. Неприводимые представления пространственных групп. АН УССР, Киев (1961). 151 с.
- [10] M. Holt, M. Sutton, P. Zschack, H. Hong, T.-C. Chiang. Phys. Rev. Lett. 98, 065 501 (2007).
- [11] T. Kohmoto, K. Tada, T. Moriyasu, Y. Fukuda. Phys. Rev. B 74, 064 303 (2006).
- [12] E. Salje, M. Gallardo, J. Jimenez, F. Romero, J. del Cerro. J. Phys.: Cond. Matter 10, 5535 (1998).
- [13] C. Ang, R. Guo, A.S. Bhalla, L.E. Cross. J. Appl. Phys. 87, 3937 (2000).
- [14] J. Hemberger, P. Lunkenheimer, R. Viana, R. Bohmer, A. Loidl. Phys. Rev. B 52, 13159 (1995).
- [15] N.A. Pertsev, A.G. Zembiglotov, A.K. Tagantsev. Phys. Rev. Lett. 80, 1988 (1998).
- [16] V.B. Shirokov, Y.I. Yuzyuk, B. Dkhil, V.V. Lemanov. Phys. Rev. B 75, 224 116 (2007).
- [17] Y.L. Li, L.E. Cross, L.Q. Chen. J. Appl. Phys. 98, 064101 (2005).
- [18] J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Korchoefer, J. Levy, D.G. Schom. Nature **430**, 758 (2004).
- [19] M.D. Biegalski, Y. Jia, D.G. Schlom, S. Trolier-McKinstry, S.K. Streiffer, V. Sherman, R. Uecker, P. Reiche. Appl. Phys. Lett. 88, 192 907 (2006).