Терагерцевые диэлектрические спектры тонких пленок (Ba,Sr)TiO₃

© Г.А. Командин, А.А. Волков, И.Е. Спектор, К.А. Воротилов*, В.М. Мухортов**

Институт общей физики им. А.М. Прохорова Российской академии наук,

Москва, Россия

* Московский государственный институт радиотехники, электроники и автоматики (Технический университет), Москва, Россия

** Южный научный центр Российской академии наук,

Ростов-на-Дону, Россия

E-mail: komandin@ran.gpi.ru

Измерены спектры отражения и пропускания пленок $Ba_{0.7}Sr_{0.3}TiO_3$ с толщинами 36 и 800 μ m на подложке из MgO на частотах 8–1000 cm⁻¹ при комнатной температуре. Методом моделирования извлечены диэлектрические параметры материала пленок. Найдена зависимость диэлектрической проницаемости от толщины пленки. Выявлено сильное влияние спектра поглощения излучения в подложке на расчетные диэлектрические спектры материала пленок. Показана необходимость учета при моделировании подфононных диэлектрических потерь в подложке.

Работа выполнена при поддержке РФФИ (грант № 06-02-16199-а).

PACS: 77.22.Gm, 77.55.+f, 78.30.-j

Пленки титаната бария-стронция с высокой диэлектрической проницаемостью перспективны для создания электронных устройств управления излучением в оптическом и СВЧ-диапазонах [1]. Начиная с 90-х годов они интенсивно исследуются всеми доступными методами, в том числе методом широкодиапазонной диэлектрической спектроскопии. Одной из проблем остается часто наблюдаемое несоответствие данных по диэлектрическим свойствам пленок, полученных контактными импедансными методами на радиочастотах и бесконтактными оптическими методами ИК-спектроскопии [2]. Настоящая работа выполнена в рамках второго подхода и посвящена выяснению влияния параметров подложки на значения расчетных диэлектрических характеристик тонких пленок Ba_{0.7}Sr_{0.3}TiO₃ (BST), осажденных на подложку из монокристаллического MgO [3].

Экспериментальными данными для анализа послужили спектры пропускания и отражения подложки MgO $(10 \times 10 \times 0.5 \text{ mm})$ и гетероструктур BST/MgO (с толщинами пленок BST 36 и 800 nm), измеренные при комнатной температуре на субмиллиметровом ЛОВ-спектрометре (в дипазоне $8-24 \text{ cm}^{-1}$) и инфракрасном Фурьеспектрометре Bruker IFS-113v ($25-1000 \text{ cm}^{-1}$). Использовались гетероструктуры BST/MgO, диэлектрические свойства которых уже исследовались импедансным методом на радиочастотах [4]. Метод оптических измерений описан в [5]. Коэффициент отражения гетероструктур измерялся при нормальном падении излучения со стороны пленки.

Частотные панорамы полученных для MgO и BST/MgO данных представлены на рис. 1 и 2. Необходимо было смоделировать эти экспериментальные спектры с помощью формул взаимодействия плоской электромагнитной волны со слоистой средой [6] в предположении резонансного отклика среды. Обычно при таком моделировании спектр однофононного отклика ИК-активных мод для ионных диэлектриков задается аддитивной осцилляторной моделью

$$\varepsilon(\nu) = \varepsilon_{\infty} + \sum_{i=1}^{n} \frac{\Delta \varepsilon_{i} \nu^{2}}{\nu_{i}^{2} - \nu^{2} + i\nu\gamma},$$
(1)

где v_i , $\Delta \varepsilon_i$, γ_i и ε_{∞} — решеточные параметры среды, частота *i*-й моды, диэлектрический вклад, затухание и суммарный высокочастотный вклад соответственно. Для сильно уширенных и перекрывающихся по частоте мод одной поляризации существен вклад, обусловленный взаимодействием осцилляторов. Для описания этого эффекта успешно используется дисперсионная модель, предложенная в [7],

$$\varepsilon_{i} = \frac{s_{1}(\nu_{2}^{2} - \nu^{2} + i\nu\gamma_{2}) + s_{2}(\nu_{1}^{2} - \nu^{2} + i\nu\gamma_{1}) - 2\sqrt{s_{1}s_{2}}(\alpha + i\nu\delta)}{(\nu_{1}^{2} - \nu^{2} + i\nu\gamma_{1})(\nu_{2}^{2} - \nu^{2} + i\nu\gamma_{2}) - (\alpha + i\nu\delta)^{2}}, \quad (2)$$

где $s_1 = \Delta \varepsilon_i v_i^2$ — сила осциллятора, α и δ — действительная и мнимая части константы связи. Методика моделирования этими формулами электродинамического отклика однослойной среды нами подробно описана в [5]. С помощью подгонки расчетных кривых под эксперимент находятся решеточные параметры, наилучшим образом передающие экспериментально наблюдаемую частотную панораму электродинамического отклика образца.

В случае двухслойной среды BST/MgO моделирование разбивается на два этапа: 1) нахождение решеточных параметров MgO путем описания электродинамического отклика пластинки MgO и 2) подбор решеточных параметров BST путем описания отклика двухслойной структуры BST/MgO с учетом параметров MgO, уже фиксированных на втором этапе.

Решеточные свойства монокристалла MgO хорошо известны из анализа многократно измерявшихся в разных работах спектров ИК-отражения [8]. Диэлектрический спектр MgO формируется двукратно вырожденным по-

Таблица 1. Параметры осцилляторной модели диэлектрического спектра MgO (Osc. 1) с учетом вкладов суммарных (Osc. 2) и разностных (D_1-D_4) многофононных процессов (толщина подложки 0.5 mm)

Модель	$\Delta \varepsilon_i$	v_i , cm ⁻¹	γ_i , cm ⁻¹	$\delta_i,\mathrm{cm}^{-1}$
Osc. 1	6.38	396	6.7	
Osc. 2	0.05	641	104	-1.3
D_1	0.022	100	21	
D_2	0.041	147	65	-38.5
D_3	0.002	170	16	
D_4	0.006	193	39	-3.9

Примечание. $\Sigma \Delta \varepsilon_i = 9.50 \pm 0.02, \, \varepsilon_\infty = 3.0.$

перечным и одним продольным оптическими фононами. Поперечный фонон дает в спектре отражения классическую П-образную "полосу остаточных лучей ", которая в целом хорошо передается простой одноосцилляторной моделью (спектр 1 на рис. 1, a). Описание провала на верхнем участке полосы достигается путем учета суммарного двухфононного процесса поглощения, что осуществляется введением в модель дополнительного слабого осциллятора, связанного с основным (линия 2 на рис. 1, a) [9]. Параметры первого и второго осцилляторов для нашего MgO (Osc. 1 и Osc. 2) приведены в табл. 1. Низкочастотный хвост полосы отражения ниже 400 ст⁻¹ нетривиальных особенностей не содержит и поэтому дальнейших усовершенствований модели не требует.

Расчетный спектр пропускания подложки MgO в рамках описанной модели представлен на рис. 1, *b* линией 1. Спектр имеет известное и особенно важное для нашего моделирования свойство: в низкочастотной области он изрезан частыми интерференционными осцилляциями, вызванными многократными отражениями электромагнитной волны в пластинке MgO. В результате многолучевой интерференции осцилляции (их период и размах) очень чувствительны к толщине пластинки и диэлектрическим свойствам MgO. Необходимость совместить расчетные осцилляции с экспериментально наблюдаемыми определяет очень резкую зависимость качества описания спектра от значения варьируемых параметров модели. Наличие осцилляций дает возможность нахождения точного привязочного значения низкочастотной (статической) диэлектрической проницаемости ε_0 материала подложки, необходимого для дальнейших расчетов. В нашем случае для MgO $\varepsilon_0 = 9.50 \pm 0.02$.

На подфононных частотах (в области $100-200 \,\mathrm{cm}^{-1}$) экспериментальный спектр пропускания демонстрирует резкую аномалию. Расчетная кривая *1* в области аномалии очень далека от правильного описания экспериментального спектра *3*. По аналогии с тем, что в области высоких частот спектры отражения MgO деформируются суммарными многофононными процессами поглощения, можно предположить, что и спектры пропускания искажаются многофононными процессами, но уже низкочастотными разностными. Эту низкочастотную полосу поглощения мы смоделировали двумя парами связанных осцилляторов (осцилляторы D в табл. 1). Как видно из рис. 1, b (линия 3), введенная в модель поправка радикально улучшает описание данных эксперимента по пропусканию и, что нетривиально, практически не сказывается на низкочастотном поведении коэффициента отражения.

С учетом параметров из табл. 1 мы описали изображенные на рис. 2 спектры пропускания и отражения гетероструктур BST/MgO набором из пяти осцилляторов, параметры которых приведены в табл. 2.

На рис. 2 точками представлены спектры отражения и пропускания BST/MgO с толщинами пленок 36 и 800 nm. В низкочастотной области (ниже 100 cm⁻¹), где одновременно низким оказывается поглощение в пленке и подложке, спектры, как и в случае свободной подложки MgO, промодулированы короткопериодическими интерференционными осцилляциями. На высоких частотах в спектрах отражения доминирует П-образная полоса фононного отражения MgO, прорезанная в центре ха-

Рис. 1. Экспериментальные и расчетные спектры отражения (a) и пропускания (b) пластинки MgO толщиной 0.5 mm. Точки — эксперимент, линии 1 — расчет в рамках простой модели однофононного поглощения, линии 2 и 3 — расчет с учетом суммарных и разностных многофононных процессов соответственно. Вертикальная стрелка указывает на укрупнение частотного масштаба. Горизонтальными стрелками отмечены использованные рабочие диапазоны субмиллиметрового и инфракрасного спектрометров.

Рис. 2. Спектры отражения и пропускания гетероструктур BST/MgO с пленками BST толщиной 36 (*a*) и 800 nm (*b*). Толщина подложки MgO 0.5 mm. Точки — эксперимент, линии — расчет по многоосцилляторной модели.

рактерным для перовскитов, к которым относится BST, провалом C_2 . Глубина провала очень чувствительна к толщине пленки и увеличивается по мере увеличения ее толщины. Вместе с увеличением толщины увеличивается и коэффициент отражения пленки на частотах ниже 300 сm⁻¹. На его фоне становятся отчетливо видны обусловленные BST слабые моды L_2 и L_3 .

Если короткопериодические осцилляции спектров пропускания гетероструктуры BST/MgO обусловлены в основном подложкой MgO, то огибающая их гладкая кривая определяется пленкой BST и зависит от ее толщины. Для нанометровой по толщине пленки BST частота первого интерференционного провала в спектре коэффициента пропускания лежит заведомо выше частотного диапазона наших измерений. Пленка BST толщиной 36 nm (рис. 2, *a*) с оценочным показателем преломления порядка 20 дает интерференционный провал в районе $2500 \,\mathrm{cm}^{-1}$. В нашем эксперименте он проявляется в виде легкого подавления спектра пропускания в области $20-100 \,\mathrm{cm}^{-1}$. В пленке BST толщиной 800 nm (рис. 2, *b*) первый интерференционный провал сдвигается вниз по частоте примерно до 200 cm⁻¹, и соответственно подавление спектра пропускания становится выраженным очень ярко: выше 100 cm⁻¹ гетероструктура полностью непрозрачна для изучения.

На рис. 3 приведены модельные диэлектрические спектры $\varepsilon'(v)$ и $\varepsilon''(v)$, построенные по совокупности

всех найденных с помощью моделирования параметров. В панораме выделяется мощная широкая полоса потерь, принадлежащая BST, с большим диэлектрическим вкладом величиной 400–600. Для твердого сегнетоэлектрического раствора BST (релаксора) такая диэлектрическая аномалия естественна и ожидаема. Именно ее свойства определяют ценность пленок BST для приложений на радиочастотах. Подобная полоса уже наблюдалась ранее в BST других составов и обсуждалась в качестве сегнетоэлектрической мягкой моды BST [10]. Отмечался неоднородный характер уширения этой моды. Параметры осцилляторов, формирующих мягкую моду в нашем случае, приведены в табл. 2.

Важнейшим параметром BST как материала является абсолютное значение диэлектрического вклада $\Delta \varepsilon$ сегнетоэлектрической моды в статическое значение диэлектрической проницаемости ε_0 . Использованная нами многоосцилляторная модель автоматически удовлетворяет соотношениям Крамерса-Кронига, площади под спектрами поглощения на рис. З однозначно определяют величины *ε*₀. При небольших толщинах пленки BST, когда зондирующее излучение со стороны пленки достигает подложки, наличие поглощения в последней, очевидно, должно сказаться на коэффициенте отражения гетероструктуры. В свободной от пленки BST подложке MgO, как отмечалось, слабые многофононные потери в MgO на коэффициент отражения пластинки MgO практически не влияют и при стандартном способе расчета ε_0 из спектра отражения (модельно или по формулам Крамерса–Кронига) на расчетной величине ε_0 для MgO не сказываются. В случае же гетероструктуры, если поглощение излучения внутри толстой подложки MgO игнорируется, его вклад в отражение переносится моделированием на счет многократно более тонкой пленки BST. Расчетное значение ε_0 для BST в результате этого оказывается завышенным. На рис. 4 показано проявление эффекта в диэлектрических спектрах тонкой

Таблица 2. Параметры осцилляторной модели диэлектрического спектра BST, описывающие совместно с параметрами для MgO из табл. 1 электродинамический отклик гетероструктуры BST/MgO на рис. 2

Толщина пленки, пт	Осциллятор	$\Delta \varepsilon_i$	v_i , cm ⁻¹	γ_i , cm ⁻¹	δ_i , cm ⁻¹
36	Мягкая мода 1	354	41	36	
	L_2	12	126	30	
800	L_3	1.5	178	24	
	Мягкая мода 2	204	72	57	
	C_2	1.2	506	43	57.1
	Мягкая мода 1	124	45	46	
	L_2	12	126	30	
	L_3	1.5	178	24	
	Мягкая мода 2	269	72	36	
	C_2	1.3	518	16	28.7

Примечание. $\varepsilon_{\infty} = 5.0; \ \Sigma \Delta \varepsilon_i = 573 \pm 5$ для пленки толщиной 36 nm и 408 ± 5 для пленки толщиной 800 nm.

пленки толщиной 36 nm: пренебрежение поглощением в подложке дает кажущиеся усиление спектра потерь в BST на высоких частотах и соответственно фиктивное двукратное увеличение статического значения ε_0 .

При корректном моделировании электродинамических свойств гетероструктуры BST/MgO наш эксперимент обнаруживает в BST в 1.5 раза большее значение ε_0 для более тонкой пленки (табл. 2). Для обоснованного объяснения этого факта данных настоящей работы недостаточно. Вопрос о связи диэлектрических характеристик материала пленок с их толщиной и качеством постоянно дискутируется в литературе и остается открытым [11,12]. Решение проблемы требует дальнейшего накопления экспериментальных данных.

Таким образом, в работе показано, что учет многофононного поглощения излучения в подложке гетероструктуры BST/MgO оказывает заметное влияние на результаты моделирования спектра дипольных возбуждений пленки BST, входящей в состав гетероструктуры. Из-за значительной разницы толщин пленки и подложки вклад в общее поглощение гетероструктуры от многофононных процессов поглощения в подложке сравним со вкладом от более интенсивных (на четыре порядка) инфракрасных полярных мод пленки и может даже превышать его. Учет этого фактора является необходимым условием адекватного описания спектра электродинамического отклика гетероструктур на подложке из MgO и получения в результате моделирования правильных

Рис. 3. Диэлектрические спектры $\varepsilon'(v)$ и $\varepsilon''(v)$ MgO и BST для толщин пленки 36 nm (сплошная линия) и 800 nm (штриховая линия).

Рис. 4. Диэлектрические спектры BST для пленки толщиной 36 nm, рассчитанные с учетом (сплошная линия) и без учета (штриховая линия) многофононных процессов поглощения в MgO.

значений диэлектрических параметров сегнетоэлектрических пленок, нанесенных на MgO.

Список литературы

- [1] J.F. Scott. Science **315**, 954 (2007).
- [2] A.A. Sirenko, C. Bernhatd, A. Golnik, A.M. Clark, J. Hao, W. Si, X.X. Xi. Nature 404, 373 (2000).
- [3] V.M. Mukhortov, Y.I. Golovko, G.N. Tolmachev, A.N. Klevtsov. Ferroelectrics 247, 75 (2000).
- [4] В.М. Мухортов, С.И. Масычев, Ю.И. Головко. ЖТФ 76, 106 (2006).
- [5] А.А. Волков, Г.А. Командин, Б.П. Горшунов, В.В. Леманов, В.И. Торгашев. ФТТ 46, 899 (2004).
- [6] М. Борн, Э. Вольф. Основы оптики. Наука, М. (1970). 855 с.
- [7] A.S. Barker, jr., J.J. Hopfield. Phys. Rev. 135, A 1732 (1964).
- [8] J.R. Jasperse, A. Kahan, J.N. Plendl, S.S. Mitra. Phys. Rev. 146, 526 (1966).
- [9] J.T. Gourley, W.A. Runciman. J. Phys. C 6, 583 (1973).
- [10] J. Petzelt, T. Ostapchuk, A. Pashkin, I. Rychetsky. J. Eur. Cer. Soc. 23, 2627 (2003).
- [11] J. Petzelt, P. Kuzel, I. Rychetsky, A. Pashkin, T. Ostapchuk. Ferroelectrics **288**, 169 (2003).
- [12] J. Oh, T. Moon, T.-G. Kim, C. Kim, J.H. Lee, S.Y. Lee, B. Park. Carrent Appl. Phys. 7, 168 (2007).