Электронные и упругие свойства сверхпроводящего наноламината Ti₂InC

© И.Р. Шеин, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, Екатеринбург, Россия

E-mail: ivanovskii@ihim.uran.ru

(Поступила в Редакцию 10 ноября 2008 г.)

Ab initio полнопотенциальный метод FLAPW с обобщенной градиентной аппроксимацией локальной спиновой плотности использован для анализа электронных свойств и параметров упругости сверхпроводящего наноламината Ti₂InC. В рамках единой схемы определены равновесные параметры кристаллической решетки, зонная структура, полная и парциальные плотности состояний, поверхность Ферми. Рассчитаны независимые коэффициенты упругости, модули объемного сжатия и сдвига, а также впервые проведены численные оценки параметров упругости для поликристаллического Ti₂InC.

Работа поддержана РФФИ (проект № 07-03-96061).

PACS: 71.20.-b, 62.20.D-, 81.05.Je

1. Введение

Тройные слоистые карбиды и нитриды $M_{n+1}A(C, N)_n$ (так называемые наноламинаты [1], где M — переходные металлы, A — p-элементы III–VI групп и n = 1, 2 или 3) благодаря необычному сочетанию своих прочностных, термических, химических свойств привлекают большое внимание как функциональные керамические материалы [1–9]. С другой стороны, для ряда наноламинатов обнаружена низкотемпературная сверхпроводимость: Mo₂GaC ($T_C \sim 3.7-4.1$) [10], Nb₂SC ($T_C < 5$ K) [11], Nb₂SnC ($T_C \sim 7.8$ K) [12] и Nb₂AsC ($T_C \sim 2$ K) [13]. Для некоторых из них особенности электронной зонной структуры исследованы с привлечением методов функционала электронной плотности [13–15].

Недавно сверхпроводящий переход с критической температурой $T_C \sim 3.1 \,\mathrm{K}$ был найден для наноламината Ti₂InC [16].

В настоящей работе с использованием *ab inito* зонного метода с обобщенной градиентной аппроксимацией локальной спиновой плотности FLAPW–GGA предпринято исследование электронных свойств и параметров упругости сверхпроводящего наноламината Ti_2InC . В результате в рамках единого метода рассчитаны оптимизированные параметры решетки, независимые коэффициенты упругости, модули объемного сжатия, сдвига, а также энергетические зоны, полная и парциальные плотности состояний и поверхность Ферми этого кристалла. Кроме того, мы впервые провели численные оценки упругих параметров для поликристаллической керамики Ti_2InC .

2. Метод расчета

Наноламинат Ti₂InC имеет гексагональную структуру типа Cr₂AlC с двумя формульными единицами в ячейке; атомы расположены в позициях: Ti —

4f {(1/3, 2/3, z), (2/3, 1/3, z + 1/2), (2/3, 1/3, -z), (1/3, 2/3, -z + 1/2)}; In — 2d {(1/3, 2/3, 3/4), (2/3, 1/3, 1/4)}; c — 2a{(0, 0, 0), (0, 0, 1/2)}, где z — так называемый "внутрений параметр" [1,9].

Расчеты проведены полнопотенциальным методом присоединенных плоских волн (FLAPW, код WIEN2k) [17] с обобщенной градиентной поправкой GGA обменно-корреляционного потенциала [18]. Точность расчета полной энергии E_{tot} при оптимизации геометрии была не хуже 0.001 mRy, число *k*-точек в зоне Бриллюэна составляло $13 \times 13 \times 3k$.

3. Обсуждение результатов

На первом этапе определены равновесные параметры решетки Ti₂InC. Эти величины ($a^{calc} = 3.1373$ Å, $c^{calc} = 14.1812$ Å и z = 0.0783) вполне разумно согласуются с имеющимися экспериментальными данными [16]; полученные расхождения (($a^{calc} - a^{exp})/a^{exp} = 0.0046$ и ($c^{calc} - c^{exp})/c^{exp} = 0.0088$) связаны с хорошо известным фактом некоторой переоценки решеточных параметров методами, использующими GGA.

Рассчитаны (по методике, описанной в [19–21]) величины независимых коэффициентов упругости C_{ij} , а именно $C_{11} = 273.4$ GPa, $C_{12} = 62.9$ GPa, $C_{13} = 50.3$ GPa, $C_{33} = 232.3$ GPa и $C_{44} = 87.2$ GPa, тогда как $C_{66} = 1/2(C_{11} - C_{12})$. Получено, что все величины C_{ij} положительны и удовлетворяют известному критерию Борна для механически устойчивых гексагональных кристаллов: $C_{11} > 0$, $(C_{11} - C_{12}) > 0$, $C_{44} > 0$ и $(C_{11} + C_{12})C_{33} - 2C_{12}^2 > 0$.

Рассчитанные значения C_{ij} позволяют получить макроскопические параметры упругости Ti₂InC, а именно модули всестороннего сжатия *B* и сдвига *G*, которые были вычислены в рамках двух основных приближений (Фойгта (V) [22] и Реусса (R) [23]) и состави-

И.Р. Шеин, А.Л. Ивановский

Модули объемного сжатия B, сдвига G, Юнга Y и отношение Пуассона ν для наноламината Ti₂InC согласно нашим FLAPW-GGA-расчетам в сравнении с имеющимися данными [28–34] для родственных наноламинатов Ti₂AC и TiC

Система	B, GPa	G, GPa	Y, GPa	ν
Ti ₂ InC	123/117 (120)**	97/95 (96)	(228)	(0.184)
Ti ₂ SC [28]	181	134	322	0.200
Ti ₂ GaC [29]	140	130	282	0.165
Ti ₂ AlC [30]	144	118	277	0.19
Ti ₂ SnC [31]	159	114	275	0.212
Ti ₂ TlC [32]	125	_	_	_
Ti ₂ GeC [33]	163	—	_	_
Ti_2PbC [33]	140	_	—	_
Ti ₂ PC [33]*	163	_	—	_
Ti ₂ AsC [33]*	175	_	—	_
Ti ₂ SiC [33]*	167	—	_	_
TiC [34]	240	—	447	0.19

* Гипотетические фазы.

** В приближении Фойгта/Реусса и для поликристаллической керамики — в скобках.

ли $B_{\rm V}=122.9~{\rm GPa},~B_{\rm R}=117.0~{\rm GPa}$ и $G_{\rm V}=97.0~{\rm GPa},~G_{\rm R}=96.2~{\rm GPa}.$

Приведенные параметры упругости получены на основе *ab inito* расчетов монокристалла Ti_2InC . В то же время исследованные экспериментально образцы наноламината Ti_2InC синтезированы в виде поликристаллических керамик [16,24–26], т.е. в виде агрегированных микрокристаллитов с произвольной взаимной ориентацией. Поэтому представляется целесообразным оценить упругие параметры для поликристаллического Ti_2InC .

Для этой цели мы использовали наиболее широко применяемую аппроксимацию Фойгта–Реусса–Хилла (VRH). В этом приближении исходят [27] из двух упомянутых моделей (Фойгта и Реусса) и оценивают модули объемного сжатия $B_{\rm VRH}$ и сдвига $G_{\rm VRH}$ керамик из соответствующих величин для монокристаллитов $B_{\rm V,R}$ и $G_{\rm V,R}$ в простой форме: $B_{\rm VRH} = 1/2(B_{\rm V} + B_{\rm R})$ и $G_{\rm VRH} = 1/2(C_{\rm V} + G_{\rm R})$. Затем можно получить усредненную сжимаемость ($\beta_{\rm VRH} = 1/B_{\rm VRH}$) и модуль Юнга ($Y_{\rm VRH}$) керамики как

$$Y_{\rm VRH} = \frac{9B_{\rm VRH}G_{\rm VRH}}{3B_{\rm VRH} + G_{\rm VRH}}.$$

Для керамики Ti₂InC нами оценено также отношение Пуассона ν как

$$\nu = \frac{3B_{\mathrm{VRH}} - 2G_{\mathrm{VRH}}}{2(3B_{\mathrm{VRH}} + G_{\mathrm{VRH}})}.$$

Отметим, что наши оценки проведены в приближении нулевой пористости керамики Ti_2InC . Рассчитанные параметры представлены в таблице и позволяют сделать следующие выводы.

1) Видно, что для $Ti_2 InC B_{VRH} > G_{VRH}$; следовательно, параметром, лимитирующим механическую устойчи-

вость наноламината, будет являться его модуль сдвига $G_{\rm VRH}$.

2) Согласно критерию [35], материал относится к хрупким, если отношение B/G меньше, чем 1.75. В нашем случае $B/G \sim 1.3$, т.е. Ti₂InC будет обнаруживать хрупкое поведение.

3) Модули сжатия, сдвига и Юнга для Ti₂InC являюся весьма малыми в сравнении с сооветствующими величинами для родственных наноламинатов Ti₂AC (где A - p-элементы III-VI групп); они горазо меньше, чем для бинарного карбида TiC (см. таблицу), тогда как сжимаемость Ti₂InC ($\beta_{VRH} \sim 0.0034$ 1/GPa) принимает максимальное значение. Таким образом, по сравнению с другими Ti₂AC фазами Ti₂InC является относительно мягким материалом.

4) Величины отношения Пуассона ν для ковалентных материалов весьма малы ($\nu \sim 0.1$), тогда как для ионных типичные значения ν составляют около 0.25 [36]. В нашем случае величина ν для Ti₂InC составляет около 0.19, т.е. следует предположить значительный вклад ионных связей в общую систему межатомных взаимодействий для рассматриваемого наноламината. Кроме того, для ковалентных и ионных материалов типичные соотношения их модулей сжатия и сдвига составляют $G \approx 1.1$ В и $G \approx 0.6$ В соответственно. В нашем случае отношение $G_{\rm VRH}/B_{\rm VRH}$ составляет около 0.80, что также указывает на смешанный ионно-ковалентный характер связей в наноламинате Ti₂InC.

5) Для характеристики механической анизотропии материалов обычно используют так называемый фактор анизотропии $A = C_{33}/C_{11}$, который принимает значение A = 1 для механически-изотропных систем, тогда как значения A < 1 характеризуют степень анизотропии. Другими характеристиками анизотропии являются так называемые факторы анизотропии сжатия $(A_{\text{comp}} = \{(B_{\text{V}} - B_{\text{R}})/(B_{\text{V}} + B_{\text{R}})\} \cdot 100\%)$ и сдвига

 $(A_{\text{shear}} = \{(G_{\text{V}} - G_{\text{R}})/(G_{\text{V}} + G_{\text{R}}) \cdot 100)$ [37], которые для изотропных кристаллов равны нулю, а 100% значения A_{comp} и A_{shear} соответствуют максимальной степени анизотропии. Для Ti₂InC наши расчеты дают величины $A = C_{33}/C_{11} = 0.85$, $A_{\text{comp}} = 2.4\%$ и $A_{\text{shear}} = 1.1\%$, т.е. данный наноламинат будет проявлять достаточно малую механическую анизотропию.

Обратимся к обсуждению электронных свойств Ti₂InC. На рис. 1 представлены энергетические зоны E(k) вдоль высокосимметричных направлений зоны Бриллюэна в интервале энергий от -15 до +5 eV. В интервалах около -14 eV и от -11 до -10 eV ниже уровня Ферми ($E_{\rm F} = 0 \, {\rm eV}$) расположены In 4dи С 2s-подобные квазиостовные зоны с малой дисперсией E(k). Занятые валентные зоны находятся в интервале энергий от $-8.6 \,\mathrm{eV}$ до E_{F} . Из рис. 1 видно, что валентные зоны и зоны проводимости перекрываются, обеспечивая металлоподобное поведение Ti₂InC. Видно также, что три прифермиевские зоны пересекают E_F (вдоль направлений K-M и A-M), свидетельствуя о многозонном характере системе. Интересной особенностью зонной структуры Ti2InC является 2D-подобное поведение квазиплоских прифермиевских зон (вдоль оси с, в направлениях L-M и K-H). Поверность Ферми Ti₂InC состоит из набора непересекающихся листов (рис. 2). Два из них, имеющие цилиндрическую и призматическую формы, ориентированы вдоль направления $\Gamma - A$; кроме того, эллипсоподобные листы центрированы в точке К.

Как следует из рис. 3, где представлены полные и парциальные плотности состояний Ti₂InC, уровень Ферми расположен вблизи локального минимума плотности состояний, разделяющего связывающие и антисвязывающие зоны. Плотность состояний на уровне Ферми ($N(E_{\rm F}) = 1.223$ states/eV·form.unit) в основном формируется за счет вкладов Ti 3*d*-состояний индия и углерода много меньше (около 0.001–0.035 states/eV·form.unit). Аналогичная особенность, т.е. доминирующая роль вкладов *d*-состояний переходных металлов в $N(E_{\rm F})$, свойственна другим сверхпроводящим наноламинатам [13–15]. Наконец, рассчитанные данные позволяют оценить константу Зом-

Рис. 2. Поверхность Ферми Ti₂InC.

Рис. 3. Полная и парциальные плотности состояний Ti₂InC.

мерфельда γ для Ti₂InC в приближении модели свободных электронов $\gamma = (\pi^2/3)N(E_F)k_B^2$; полученная величина составляет $\gamma = 2.883 \text{ mJ} \cdot \text{K}^2 \cdot \text{mol}^{-1}$.

4. Заключение

Впервые в рамках единого неэмпирического зонного метода FLAPW-GGA проведены исследования электронного строения и ряда параметров упругости сверхпроводящего наноламината Ti₂InC. Установлено, что Ti₂InC — механически стабильный материал с незначительной упругой анизотропией; параметром, лимитирующим его механическую устойчивость, является модуль сдвига. Кроме того, Ti₂InC представляет собой относительно мягкий материал, которому свойственно хрупкое поведение.

Согласно проведенным расчетам, прифермиевские зоны, которые вовлечены в формирование сверхпроводящего состояния Ti₂InC, являются квазидвумерными и составлены преимущественно Ti 3*d*-состояниями с малой примесью валентных состояний атомов подрешеток индия и углерода.

Список литературы

- [1] M.W. Barsoum. Prog. Solid. Chem. 28, 201 (2000).
- [2] А.Л. Ивановский. Успехи химии 65, 499 (1995).
- [3] Z.M. Sun, R. Ahuja, J.M. Schneider. Phys. Rev. B 68, 224112 (2003).
- [4] M.W. Barsoum, T. El-Raghy. J. Am. Ceram. Soc. 79, 1953 (1996).
- [5] M.W. Barsoum, D. Brodkin, T. El-Raghy. Scripta Met. Mater. 36, 535 (1997).
- [6] J.-F. Li, W. Pan, F. Sato, R. Watanabe. Acta Mater. 49, 937 (2001).
- [7] S. Amini, M.W. Barsoum, T. El-Raghy. J. Am. Ceram. Soc. 90, 3953 (2007).
- [8] N.I. Medvedeva, A.J. Freeman. Scripta Mater. 58, 671 (2008).
- [9] M.W. Barsoum. In: Encyclopedia of materials: science and technology. Elsevier, Amsterdam (2006). P. 1.
- [10] L.E. Toth, W. Jaitschko, M. Yen. J. Less-Comm. Met. 10, 129 (1967).
- [11] K. Sakamaki, H. Wada, H.Y. Nozaki, Y. Onuki, M. Kawai. Solid State Commun. 112, 323 (1999).
- [12] A.D. Bortolozo, O.H. Sant'Anna, M.S. da Luz, C.A.M. dos Sandos, A.S. Pereira, K.S. Trentin, A.J.S. Machado. Solid State Commun. 139, 57 (2007).
- [13] S.E. Lofland, J.D. Hettinger, T. Meehan, A. Bryan, P. Finkel, S. Gupta, M.W. Barsoum, G. Hug. Phys. Rev. B 74, 174 501 (2006).
- [14] S.V. Halilov, D.J. Singh, D.A. Papaconstantopoulos. Phys. Rev. B 65, 174 519 (2002).
- [15] И.Р. Шеин, В.Г. Барбуров, А.Л. Ивановский. ДАН. Сер. физ. химия **411**, 343 (2006).
- [16] A.D. Bortolozo, O.H. Sant'Anna, C.A.M. dos Sandos, A.J.S. Machado. Solid State Commun. 144, 419 (2007).
- [17] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz. WIEN2k. An Augmented plane wave plus local orbitals profgram for calculating crystal properties. Vienna University of Technology, Vienna (2001). 188 p.
- [18] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [19] F. Jona, P.M. Marcus. Phys. Rev. B 66, 094104 (2002).
- [20] K.B. Panda, K.S.R. Chandran. Comput. Mater. Sci. 35, 134 (2006).
- [21] I.R. Shein, A.L. Ivanovskii. J. Phys.: Cond. Matter 20, 415 218 (2008).
- [22] W. Voigt. Lehrbuch der Kristallphysik. Teubner, Leipzig (1928).

- [23] A. Reuss. Z. Angew. Math. Mech. 9, 49 (1929).
- [24] M.W. Barsoum, J. Golczewski, H.J. Seifert, F. Aldinger. J. Alloys Comp. 340, 173 (2002).
- [25] A. Ganguly, M.W. Barsoum, J. Schuster. J. Am. Chem. Soc. 88, 1290 (2005).
- [26] S. Gupta, E.N. Hoffman, M.W. Barsoum. J. Alloys Comp. 426, 168 (2006).
- [27] R. Hill. Proc. Phys. Soc. London A 65, 349 (1952).
- [28] Y.L. Du, Z.M. Sun, H. Hashimoto, W.B. Tian. Phys. Lett. A 372, 5220 (2008).
- [29] A. Bouhemadou, R. Khenata. J. Appl. Phys. 102, 043 528 (2007).
- [30] J.D. Hettinger, S.E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell, S. Gupta, A. Ganguly, T. El-Raghy, M.W. Barsoum. Phys. Rev. B 72, 115120 (2005).
- [31] A. Bouhemadou. Physica B 403, 2707 (2008).
- [32] J.A. Warner, S.K.R. Patil, S.V. Khare, K.C. Masiulaniec. Appl. Phys. Lett. 88, 101911 (2006).
- [33] G. Hug. Phys. Rev. B 74, 184113 (2006).
- [34] V.V. Ivanovskaya, I.R. Shein, A.L. Ivanovskii. Diamond Related Mater. 16, 243 (2007).
- [35] S.F. Pugh. Phil. Mag. 45, 833 (1954).
- [36] J. Haines, J.M. Leger, G. Bocquillon. Ann. Rev. Mater. Res. 31, 1 (2001).
- [37] D.H. Chung, W.R. Buessem. In: Anisotropy in single crystal refractory compounds / Eds F.W. Vahldiek, S.A. Mersol. Plenum, N.Y. (1968). P. 217.