Влияние размерного фактора на магнитные свойства манганита La_{0.50}Ba_{0.50}MnO₃

© С.В. Труханов, А.В. Труханов*, С.Г. Степин*, Н. Szymczak**, С.Е. Botez***

Объединенный институт физики твердого тела и полупроводников Национальной академии наук Белоруссии, 220072 Минск, Белоруссия * Витебский государственный университет, 210036 Витебск, Белоруссия ** Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland *** Physics Department, University of Texas at El Paso, TX 79968 El Paso, USA

E-mail: truhanov@ifttp.bas-net.by

(Поступила в Редакцию 1 августа 2007 г.)

Оптимизированным золь-гель-методом синтезирован нанокристаллический манганит La_{0.50}Ba_{0.50}MnO₃. Исходный образец был подвергнут пошаговой термической обработке в атмосфере вохдуха. Выполнено исследование стехиометрии ионов, морфологии кристаллитов керамики и магнитных свойств. Установлено, что с ростом температуры отжига средний размер кристаллита возрастает от $D \sim 30$ nm до $\sim 7 \mu$ m. Все исследованные образцы характеризуются перовскитоподобной кубической структурой с параметром элементарной ячейки, постоянно возрастающим от $a \sim 3.787$ до ~ 3.904 Å по мере увеличения среднего размера кристаллита. Наиболее значительно эффект сжатия решетки ($\approx 3\%$) наблюдается для образца со средним размером кристаллита ~ 30 nm. Увеличение среднего размера кристаллита вызывает немонотонное увеличение температуры Кюри от $T_C \approx 264$ до ≈ 331 K и спонтанного магнитного момента от $\sigma_S \approx 1.52$ до $\approx 3.31 \mu_B/f.u$. Аномальное поведение магнитных свойств полученных манганитов La_{0.50}Ba_{0.50}MnO₃ объясняется конкуренцией двух размерных эффектов: фрустрации косвенных обменных взаимодействий Mn³⁺–О–Mn⁴⁺ на поверхности нанокристаллита и сжатия кристаллической решетки под действием сил натяжения поверхностного слоя нанокристаллита.

Работа частично профинансирована Белорусским Республиканским фондом фундаментальных исследований (проект № Ф06Р-078).

PACS: 61.10.Nz, 74.62.Bf, 75.30.Et

1. Введение

Магнитные и электрические свойства дырочнозамещенных манганитов Ln_{1-x}A_xMnO₃ (Ln — трехвалентные редкоземельные ионы, а также Bi³⁺ и Y³⁺; A — двухвалентные ионы типа Ca²⁺, Sr²⁺, Ba²⁺, Cd²⁺, Pb²⁺) стали предметом многочисленных экспериментальных и теоретических исследований [1-7]. Причина этого интереса — открытие таких коллективных электронных явлений, как так называемое "колоссальное" магнитосопротивление (КМС) и индуцированные внешним магнитным полем фазовые переходы металлдиэлектрик и зарядовый порядок-беспорядок [8-10]. Ранние исследования этих материалов были вызваны необходимостью разработки и использования диэлектрических ферромагнетиков с большой величиной спонтанной намагниченности для высокочастотных применений. Более поздние исследования стимулировались изучением и использованием КМС. Хотя природа физических явлений, происходящих в манганитах, еще до конца не выяснена, эти составы уже сейчас находят широкое применение на практике. Они используются в качестве записывающих и считывающих устройств в магнитной записи [11], твердых электролитов топливных ячеек [12], катализаторов химических реакций [13] и высокочувствительных датчиков магнитного поля [14].

Ва-замещенные манганиты исследованы значительно слабее, чем составы, замещенные другими катионами. Это обусловлено трудностью получения в атмосфере воздуха качественных образцов в широком концентрационном интервале катионов заместителя [15]. Как было установлено, при использовании обычной керамической технологии предел растворимости для катионов Ba²⁺ составляет $x \approx 0.47$ [16]. Это обусловлено стремлением катионов марганца приобретать четырехвалентное состояние с образованием на воздухе гексагонального манганита Ba²⁺Mn⁴⁺O₃²⁻. Недавно однородный ряд твердых растворов манганитов, замещенных ионами бария, был продлен до x = 0.50 [17] с помощью двухэтапного восстановительно-окислительного синтеза.

Среди прочих манганитов Ва-замещенные манганиты привлекают интерес также тем, что имеют температуру Кюри T_C , близкую к комнатной. Например, для La_{0.50}Ba_{0.50}MnO₃ обнаружена $T_C \approx 270$ K, в районе которой наблюдается пик магнитосопротивления [18]. Температура электронных фазовых переходов вблизи комнатной создает для рассматриваемого материала широкие перспективы с точки зрения его практического использования. Материал, проявляющий значительную величину магнитосопротивления в достаточно слабом магнитном поле при комнатной температуре, может быть использован в электронных устройствах, эксплуатируемых в быту. Увеличение чувствительности материала к магнитному полю приводит к миниатюризации электронных устройств.

Известны уникальные физические свойства манганитов типа LnBaMn₂O₆, обусловленные упорядочением катионов в *A*-подрешетке перовскита [19–29]. Главная структурная особенность этих катион-упорядоченных соединений заключается в том, что плоскости MnO₂ чередуются с двумя плоскостями LnO и BaO, полностью заполненными одним типом катионов, в результате чего октаэдры MnO₆ искажаются периодично. Физические свойства таких катион-упорядоченных LnBaMn₂O₆ не могут быть объяснены с учетом лишь одного толеранц-фактора, как это происходит в случае статистического распределения катиона заместителя для Ln_{0.50}Ba_{0.50}MnO₃. Такой тип катионного упорядочения приводит к увеличению температуры Кюри от ~ 270 до ~ 340 K для LaBaMn₂O₆ [18].

В соединении LaBaMn₂O₆ антиферромагнитная фаза CE-типа сосуществует с ферромагнитной. Это обстоятельство подтверждает, что электронное фазовое расслоение в манганитах является не только результатом случайного заполнения A-подрешетки, а определяется еще и конкуренцией сверхобменных взаимодействий с зарядовым упорядочением. Последнее в свою очередь сильно подвержено влиянию со стороны незначительных изменений локальной структуры на уровне первой координационной сферы [30].

Интересно отметить, что подобные свойства наблюдаются только для манганитов с максимальной (100%) степенью упорядочения катионов La³⁺ и Ba²⁺. Особыми технологическими условиями обработки можно получать целый ряд твердых растворов [La_gBa_{1-g}]_{La}[La_{1-g}Ba_g]_{Ba}Mn₂O₆ с различной степенью упорядочения от 0 до 100% [31,32]. Катионное разупорядочение подавляет антиферромагнетизм, и твердый раствор La_{0.50}Ba_{0.50}MnO₃ становится ферромагнетиком во всем температурном интервале ниже температуры Кюри.

Недавно было обнаружено, что температура фазового перехода ферромагнетик-парамагнетик и величина магнитосопротивления зависят от размера кристаллита керамики [33]. Было установлено, что с уменьшением размера кристаллита до ~ 30 nm наблюдается значительное увеличение T_C . Синтез по обычной керамической технологии — методом твердофазных реакций на воздухе при 1500°С — не дает возможности получать размер кристаллита менее $\sim 1 \,\mu$ m [34–36].

Целью настоящей работы было получение манганита $La_{0.50}Ba_{0.50}MnO_3$ с размером нанокристаллита, близким к ~ 30 nm, с помощью модернизированного золь-гельметода и исследование особенностей структуры и магнитных свойств образцов в зависимости от условий их термической обработки.

2. Описание эксперимента

Для того чтобы приготовить нанокристаллический порошок $La_{0.50}Ba_{0.50}MnO_3$, был применен модернизированный метод полимерного прекурсора. Однородность и фазовая чистота достигались при низких температурах, до $\approx 300^{\circ}$ С, в отличие от температуры 1550°С, необходимой для того, чтобы синтезировать этот материал по обычной керамической технологии. Основная трудность при синтезе нанокристаллических многокомпонентных оксидов — это плохой контроль стехиометрии на наноуровне. В настоящей работе эта трудность была успешно преодолена.

Для синтеза были взяты оксиды и карбонат: La_2O_3 , Mn_2O_3 и $BaCO_3$ (все квалификации ОСЧ), из которых были получены нитраты соответствующих катионов. При смешивании реагентов с азотной кислотой (63 wt.%) образовывались нитраты

$$La_2O_3 + 6HNO_3 \rightarrow 2La(NO_3)_3 + 3H_2O, \qquad (1)$$

$$BaCO_3 + 2HNO_3 \rightarrow Ba(NO_3)_2 + H_2O + CO_{2\uparrow}, \qquad (2)$$

$$2Mn_2O_3+8HNO_3\rightarrow 4Mn(NO_3)_2+4H_2O+O_{2\uparrow}. \eqno(3)$$

Для лучшего контроля на наноуровне нитраты были взяты в строго рассчитанном по формулам весе. Эти нитраты были растворены в равном весе воды. К этому раствору при равном отношении при постоянном помешивании был добавлен трехатомный предельный спирт — глицерин С₃Н₈О₃, в качестве органической матрицы с массой 78.26 g. Была применена именно эта органическая матрица, а не предложенный многими учеными этиленгликоль. Этиленгликоль, полимеризуясь, образовывает полиэтиленгликоль и через кислородный "мостик" связывает катион металла с органическим радикалом. Глицерин был выбран из-за схожести механизма "изоляции" катиона. Методом ИК-спектроскопии на модельных соединениях показано, что La образует катион-органические комплексы с глицерином, построенные по типу незамкнутых краун-эфиров. Глицерин проявляет большую кислотность, нежели этиленгликоль, из-за взаимного влияния трех гидроксильных групп; следовательно, хелатирующая способность у глицерина выше, чем у этиленгликоля. Образуются глицераты [37]. Когда матрица полимеризуется, образуется полимер с изолированными друг от друга катионами металлов. Значительная вязкость полимера сохраняет различные катионы от разделения и обеспечивает высокий уровень однородности. Этот катион-органический комплекс (раствор нитратов и органическая матрица) был выпарен до образования фазы "толстого золя" на электрической плитке при температуре 75-100°С. Дальнейший отжиг полученного золя был выполнен в муфельной печи при нагревании до более высоких температур ($\approx 300^{\circ}$ C) в течение 10 h. Из-за выгорания органической матрицы происходило разрушение катион-органического комплекса и одновременное окисление катионов. Образование нанокристаллического La_{0.50}Ba_{0.50}MnO₃ можно представить как

$$\begin{split} & 0.50 La(NO_3)_3 + 0.50 Ba(NO_3)_2 \\ & + Mn(NO_3)_2 \rightarrow La_{0.50} Ba_{0.50} MnO_3 + 4.5 NO \uparrow +4.5O_{2\uparrow}. \end{split}$$

(----)

Полученный нанокристаллический порошок был спрессован в цилиндр диаметром 2 ст и высотой 1.5 ст на гидравлическом прессе в стальной прессформе под давлением ~ 10⁸ Ра. Далее этот образец был подвергнут пошаговой термической обработке на воздухе при температурах 500, 700, 900 и 1500°С. Было установлено, что температурная обработка влияет на размер частиц и морфологию финального продукта. Величина содержания кислорода была определена термогравиметрическим анализом [38].

Рентгеновский анализ полученных образцов был проведен на дифрактометре ДРОН-3М в СиK_a-излучении при комнатной температуре в интервале углов $20 \le 2\theta \le 80^{\circ}$. Для отфильтровывания K_{β} -излучения применялся графитовый монохроматор. Наблюдение топографии поверхности скола исследуемых образцов осуществлялось с помощью растрового электронного микроскопа марки LEO1455VP фирмы Carl Zeiss. Исследования проводились как при нормальном падении пучка на поверхность образца, так и при наклоне образца. Рентгеноспектральный микроанализ проводился с использованием энергодисперсионного SiLi-полупроводникового детектора фирмы Röntec (Германия). Для анализа распределения химических элементов осуществлялось сканирование образца по заданной линии. Средний размер кристаллита был оценен также по формуле Шеррера

$$D = 0.9\lambda/(A^2 - B^2)^{1/2}\cos\theta_{\rm B}$$

где $\lambda = 1.5405$ Å — длина волны Си K_{α} -излучения, А — ширина рентгенодифракционного пика образца на его полувысоте, В — ширина рентгенодифракционного пика эталона на его полувысоте, $\theta_{\rm B}$ — брэгговский угол. В качестве эталона был использован кристаллический кварц.

Исследования удельной намагниченности были выполнены на SQUID-магнитометре в интервале температур 4.2–350 К и полей –20–20 kOe. Были выполнены измерения в зависимости от температуры в слабом поле 100 Oe в режиме отогрева после охлаждения без поля (ZFC) и в поле (FC), а также в зависимости от поля при температуре 5 К. Температуры Кюри T_C определялись по температурной зависимости FC-кривой в поле 100 Oe как точка перегиба (min{ dM_{FC}/dT }). Спонтанный атомный магнитный момент σ_S был определен по полевой зависимости с помощью линейной экстраполяции к нулевому полю.

3. Полученные экспериментальные результаты и их обсуждение

Согласно результатам термогравиметрического анализа, синтезированные на воздухе образцы были стехиометрическими по кислороду. Пошаговая термическая обработка на воздухе в интервале 500–1500°С не изменяла содержание кислорода. Результаты рентгеноспектрального микроанализа показали, что соотношение катионов La:Ba:Mn во всех полученных образцах соответствует 1:1:2.

Результаты рентгенофазового анализа представлены на рис. 1. После отжига золя при температуре 300°С по-

Рис. 1. Порошковые дифрактограммы, полученные при комнатной температуре для исходного (a) и отожженных при 500 (b), 700 (c), 900 (d) и 1500°С (e) образцов La_{0.50}Ba_{0.50}MnO₃. *I* — брэгговские рефлексы примесных фаз La₂O₃ и BaO, *2* — брэгговские рефлексы гексагональной анион-дефицитной фазы LaMnO_{3- δ}.

Рис. 2. Электронные фотографии поверхности исходного (I,II) и отожженных при 500 (III), 700 (IV), 900 (V) и 1500°С (VI) образцов La_{0.50}Ba_{0.50}MnO₃.

рошок в основном ($\sim 98 \text{ wt.}\%$) состоит из перовскитной кубической фазы с параметром элементарной ячейки, равным $a \sim 3.787$ Å. Небольшое количество примеси $(\sim 2 \text{ wt.}\%)$ может быть удовлетворительно идентифицировано как оксиды La2O3 и BaO. Брэгговские рефлексы имеют значительное уширение, что свидетельствует о малом размере кристаллита. Оценка этого размера по формуле Шеррера дает величину, близкую к 30 nm. Пошаговая термическая обработка этого образца приводит к значительному увеличению интенсивности и уменьшению ширины брэгговских рефлексов, что свидетельствует о возрастании среднего размера кристаллита керамики. Этот факт подтверждается и расчетами по формуле Шеррера. Кроме этого наблюдается существенное смещение центров тяжести рефлексов в сторону меньших углов с ростом температуры отжига. Этот факт указывает на увеличение параметра элементарной ячейки, который достигает $a \sim 3.904$ Å для температуры отжига 1500°С. Это значение хорошо согласуется с литературными данными [39,40]. Параметр элементарной ячейки возрастает немонотонно. Самое резкое возрастание (на $\approx 3\%$) наблюдается при переходе к образцу, отожженному при 500°С, со средним размером кристаллита ~ 60 nm и параметром элементарной ячейки $a \approx 3.885$ Å. Для образца, отожженного при 1500°С, наблюдается небольшое количество ($\approx 2 \text{ wt.\%}$) примесей фазы, которая может быть удовлетворительно идентифицирована как гексагональный анион-дефицитный ВаМпО_{3-б} [41]. Это обусловлено стремлением катионов марганца приобретать на воздухе четырехвалентное состояние. Катион-упорядоченные образцы LaBaMn₂O₆

обычно демонстрируют тетрагональный тип искажения элементарной ячейки, вызванной упорядочением катионов La³⁺ и Ba²⁺ в плоскостях (001) и, следовательно, удвоением элементарной ячейки вдоль направления [001]. Наличие кубической симметрии для всех исследованных образцов указывает в среднем на статистическое распределение катионов в кристаллической структуре [42]. Однако для образца, отожженного при 1500°С, возможно существование небольшой степени частичного упорядочения катионов La³⁺ и Ba²⁺, о чем свидетельствует наличие слаборазрешимых сверхструктурных рефлексов. Таким образом, величина параметра элементарной ячейки образца, отожженного при 1500°С, определяется действием двух конкурирующих эффектов: увеличением среднего размера кристаллита и частичным упорядочением катионов в А-подрешетке перовскита. Проведение детального структурного анализа по методу Ритвельда [43] — определение координат ионов, позиций заполнения, температурных параметров и факторов соответствия — затрудняется наличием значительного уширения брэгговских рефлексов.

Размер кристаллита полученных образцов был определен также непосредственным методом с помощью растворимого электронного микроскопа. Результаты исследования топологии поверхности представлены на рис. 2. Нанокристаллический порошок, полученный при ~ 300°C, характеризуется средним размером кристаллита, равным ~ 30 nm. В результате формирования органического полимера кристаллиты в форме тонких "чешуек" образуют длинные нити. Прессование и термическая обработка разрушают исходный структурный

Рис. 3. Температурные зависимости удельной намагниченности в ZFC- и FC-режимах в поле 100 Ое для исходного (a) и отожженных при 500 (b), 700 (c), 900 (d) и 1500°C (e) образцов La_{0.50}Ba_{0.50}MnO₃. На вставках — температурные зависимости производной удельной намагниченности, измеренной в FC-режиме.

мотив. Рост температуры отжига почти линейно увеличивает средний размер кристаллита, который для 1500° C достигает $\sim 7 \, \mu$ m.

На рис. З представлены температурные зависимости удельной намагниченности в ZFC- и FC-режимах. Исходный нанокристаллический порошок испытывает магнитный переход при ~ 264 К. Сам магнитный переход размыт. По всей видимости, это результат существования нанометровых кристаллитов. ZFC- и FC-кривые значительно различаются, что может быть объяснено увеличением коэффициентов магнитной кристаллографической анизотропии при уменьшении температуры. Образец, отожженный при 500°С, характеризуется несколько более низкой температурой Кюри, равной ≈ 259 К. Далее, с ростом температуры отжига, наблюдается монотонное увеличение T_C от ≈ 289 до ≈ 331 К. FC-кривая стремится к насыщению ниже температуры Кюри, а различия между ZFC- и FC-кривыми постепенно исчезают. Размытость перехода уменьшается, что фиксируется по ширине пика производной. Эти факты хорошо согласуются с увеличением среднего размера кристаллита. Следует напомнить, что поликристаллический образец La0.50 Ba0.50 MnO3 с микрометровыми кристаллитами и полностью разупорядоченным расположением катионов La³⁺ и Ba²⁺ в А-подрешетке перовскита имеет температуру Кюри, равную ≈ 270 K, в то время как упорядочение катионов приводит к возрастанию T_C до ≈ 340 K [18]. Таким образом, температура Кюри образца, отожженного при 1500°С, определяется как увеличением среднего размера кристаллита до микрометрового значения, так и частичным упорядочением катионов La³⁺ и Ba²⁺. Между степенью упорядочения катионов La³⁺ и Ba²⁺, параметром элементарной ячейки и температурой Кюри существует определенная корреляция. Чем выше степень упорядочения, тем меньше параметр элементарной ячейки и выше температура Кюри.

Спонтанный магнитный момент и коэрцитивная сила полученных образцов в основном состоянии ($\approx 5 \,\mathrm{K}$) были определены по полевым зависимостям магнитного момента (рис. 4). Исходный нанокристаллический порошок La_{0.50}Ba_{0.50}MnO₃ обладает минимальным спонтанным магнитным моментом $\sigma_S \approx 1.52 \,\mu_{\rm B}/{
m f.u.}$ и максимальным значением коэрцитивной силы $H_C \sim 530$ Oe. Величина спонтанного магнитного момента для этого образца составляет ~ 43% от теоретически возможного при полностью коллинеарном упорядочении спинов катионов: 50% ${
m Mn^{3+}}~(\sigma \approx 4\,\mu_{
m B})$ и 50% ${
m Mn^{4+}}~(\sigma \approx 3\,\mu_{
m B}).$ С ростом температуры отжига коэрцитивная сила уменьшается вплоть до нуля, в то время как спонтанный магнитный момент вначале уменьшается до $\approx 1.22 \mu_{\rm B}/{\rm f.u.}$ а затем возрастает до $\approx 3.31 \,\mu_{\rm B}/{\rm f.u.}$, что составляет ≈ 35 и $\approx 96\%$ от теоретически возможного значения. Эти факты указывают на неоднородное ферромагнитное состояние.

Обобщенные структурные и магнитные характеристики полученных образцов в зависимости от температуры отжига представлены на рис. 5. Особое внимание обращает на себя корреляция немонотонного изменения температуры Кюри, спонтанного магнитного момента и параметра элементарной ячейки с ростом температуры отжига для образца со средним размером кристаллита ≈ 60 nm.

Для объяснения металлического ферромагнитного состояния замещенных манганитов Зинером [44] и Де Женом [45] была разработана модель так называемого "двойного обмена". Основной процесс в этом механизме выполняют частично коллективизированные e_g -электроны, которые перемещаются от катиона Mn^{3+} $(t_{2g}^3 e_g^1, S = 2)$ к Mn^{4+} $(t_{2g}^3, S = 3/2)$ через анионы O^{2-} без изменения спиновой ориентации. Суммарные спины полностью локализованных t_{2g}^3 -электронов поляризуются перескоками коллективизированных e_g -электронов, и вещество становится ферромагнетиком ниже T_C . Кроме величины соотношения разновалентных ионов марганца магнитные свойства манганитов в значительной мере определяются еще такими параметрами, как средний ионный радиус *A*-подрешетки перовскита $\langle r_A \rangle$ [46], величина дисперсии радиусов химических элементов $\sum_i x_1r_i^2 - \langle r_A \rangle^2$, заполняющих *A*-подрешетку [47], а так-

Рис. 4. Полевые зависимости удельного магнитного момента для исходного (*a*) и отожженных при 500 (*b*), 700 (*c*), 900 (*d*) и 1500°С (*e*) образцов La_{0.50}Ba_{0.50}MnO₃ при T = 5 K.

Рис. 5. Зависимости температуры Кюри (1), спонтанного атомного магнитного момента (2), коэрцитивной силы (3), среднего размера кристаллита (4) и параметра элементарной ячейки (5) от температуры отжига для образца La_{0.50}Ba_{0.50}MnO₃.

же средняя длина связи $\langle Mn-O \rangle$ [48]. Как правило, уменьшение среднего радиуса $\langle r_A \rangle$, а также увеличение дисперсии квадрата радиусов и средней длины связи $\langle Mn-O \rangle$ приводят к уменьшению T_C [49].

Величина соотношения Mn³⁺/Mn⁴⁺, близкая к единице, определяет концентрационную фазовую границу перехода ферромагнетик–антиферромагнетик [50]. Поэтому спонтанный магнитный момент и температура Кюри для таких соединений несколько ниже теоретически возможных значений. С увеличением содержания катионов Mn⁴⁺ манганиты переходят в антиферромаг-

нитное и диэлектрическое состояния. Согласно эмпирическим правилам Гуденафа-Канамори [51,52], чем ближе средний угол связи (Mn-O-Mn) к 180°, тем выше интенсивность обменных взаимодействий. Локальное распределение углов связи Mn-O-Mn в значительной степени определяется характером расположения катионов в А-подрешетке. Статистическое распределение катионов приводит к сильным локальным искажениям в распределении углов связи Mn-O-Mn, что вызывает ослабление обменных взаимодействий. Упорядочение катионов La³⁺ и Ba²⁺ в А-подрешетке приводит к двум следствиям: 1) возрастает периодичность в распределении углов связи Mn-O-Mn (возможно, возрастает и средний угол связи (Mn-O-Mn); 2) уменьшается длина связи (Mn-O) как результат уменьшения объема элементарной ячейки. Эти следствия значительно увеличивают температуру Кюри. Частично упорядоченные состояния дают промежуточные значения Т_С, причем с уменьшением степени упорядочения температура Кюри уменьшается. Возрастание величины и периодичности в распределении среднего угла (Mn-O-Mn) и длины (Mn-O) связи усиливает процесс переноса носителей заряда в результате увеличения интеграла переноса е д-электронов. Поэтому с увеличением степени упорядочения критическая температура перехода металлдиэлектрик также возрастает. Как правило, смещается и пик магнитосопротивления. Наблюдается определенная корреляция между спиновыми и зарядовыми состояниями.

Хорошо известно, что на поверхности раздела сред происходит искажение периодичности расположения катионов, которое ослабляет обменные взаимодействия. Поэтому с увеличением доли поверхностного слоя по отношению к объему кристаллита наблюдается ослабление ферромагнетизма [53], что наиболее ярко проявляется для нанометрового масштаба. Этим фактом объясняются минимальные значения T_C и σ_S для образца со средним размером кристаллита $\sim 60\,\mathrm{nm}$. Однако увеличение доли поверхностного слоя по отношению к объему кристаллита вызывает также сжатие элементарной ячейки [54] и усиление обменных взаимодействий. Этим фактом объясняется некоторое увеличение T_C и σ_S для образца со средним размером кристаллита $\approx 30\,\mathrm{nm}$. Таким образом, аномальное поведение магнитных свойств полученных манганитов La_{0.50}Ba_{0.50}MnO₃ объясняется конкуренцией двух размерных эффектов.

4. Заключение

В настоящей работе представлены результаты исследования стехиометрии ионов, морфологии кристаллитов керамики и магнитных свойств манганитов La_{0.50}Ba_{0.50}MnO₃ в зависимости от условий термической обработки. Установлено, что с ростом температуры отжига средний размер кристаллита возрастает от $D \approx 30$ nm до $\approx 7 \,\mu$ m. Отклонения от стехиометрии не

зафиксировано. Все исследованные образцы характеризуются перовскитоподобной кубической структурой с параметром элементарной ячейки, постоянно возрастающим от ≈ 3.787 до ≈ 3.904 Å по мере увеличения среднего размера кристаллита. Наиболее значительно $(\approx 3\%)$ эффект сжатия решетки наблюдается для образца со средним размером кристаллита ≈ 30 nm. Эффекты упорядочения катионов в А-подрешетке перовскита слабо выражены. Увеличение среднего размера кристаллита вызывает также немонотонное увеличение температуры Кюри от $T_C \approx 264$ до ≈ 331 К и спонтанного магнитного момента от $\sigma_S \approx 1.52$ до $\approx 3.31 \,\mu_{\rm B}/{\rm f.u.}$ Для образца с $D \approx 60\,\mathrm{nm}$ наблюдаются минимальные значения $T_{\rm C} \approx 259 \, {\rm K}$ и $\sigma_{\rm S} \approx 1.22 \, \mu_{\rm B} / {\rm f.u.}$ С увеличением среднего размера кристаллита коэрцитивная сила уменьшается от $H_C \approx 5.27$ Ое до нуля. Аномальное поведение магнитных свойств полученных манганитов La0.50 Ba0.50 MnO3 объясняется фрустрацией косвенных обменных взаимодействий Mn³⁺-О-Mn⁴⁺ на поверхности нанокристаллита и сжатием кристаллической решетки под действием сил натяжения поверхностного слоя нанокристаллита.

Список литературы

- [1] S.V. Trukhanov. J. Mater. Chem. 13, 347 (2003).
- [2] С.М. Дунаевский. ФТТ 46, 193 (2004).
- [3] K. Dörr. J. Phys. D: Appl. Phys. 39, R 125 (2006).
- [4] G. Matsumoto. J. Phys. Soc. Jap. 29, 606 (1970).
- [5] E. Dagotto. New J. Phys. 7, 67 (2005).
- [6] K. Kubo. J. Phys. Soc. Jpn. 33, 21 (1972).
- [7] K. Kubo. J. Phys. Soc. Jpn. 33, 929 (1972).
- [8] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer. Phys. Rev. Lett. 71, 2331 (1993).
- [9] S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen. Science 264, 413 (1994).
- [10] Y. Tomioka, A. Asamitsu, Y. Moritomo, H. Kuwahara, Y. Tokura. Phys. Rev. Lett. 74, 5108 (1995).
- [11] E.L. Nagaev. Phys. Rep. 346, 387 (2001).
- [12] F.W. Poulsen. Solid State Ion. 129, 145 (2000).
- [13] J. Mizusaki, N. Mori, H. Takai, Y. Yonemura, H. Minamiue, H. Tagawa, M. Dokia, H. Inaba, K. Naraya, T. Sasamoto, T. Hashimoto. Solid State Ion. **129**, 153 (2000).
- [14] E.L. Brosha, R. Mukundan, D.R. Brown, F.H. Garzon, J.H. Visser, M. Zanini, Z. Zhou, E.M. Logotheris. Sensors and Actuators B 69, 171 (2000).
- [15] F. Millange, E. Suard, V. Caignaert, B. Raveau. Mater. Res. Bull. 34, 1 (1999).
- [16] I.O. Troyanchuk, S.V. Trukhanov, D.D. Khalyavin, H. Szymczak. J. Magn. Magn. Mater. 208, 217 (2000).
- [17] B. Ravean, C. Martin, A. Maignan, M. Hervieu. J. Phys.: Cond. Mater. 14, 1297 (2002).
- [18] F. Millange, V. Caignaert, B. Domenges, B. Raveau, E. Suard. Chem. Mater. 10, 1974 (1998).
- [19] D. Akahoshi, M. Uchida, Y. Tomioka, T. Arima, Y. Matsui, Y. Tokura. Phys. Rev. Lett. **90**, 177 203 (2003).
- [20] T. Nakajima, H. Yoshizawa, Y. Ueda. J. Phys. Soc. Jpn. 73, 2283 (2004).
- [21] J. Spooren, R.I. Walton, F. Millange. J. Mater. Chem. 15, 1542 (2005).
- [22] N. Furukawa, Y. Motome. J. Phys. Soc. Jpn. 74, S 203 (2005).

- [23] O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J.D. Jorgensen, S. Short, C.E. Botez, P.W. Stephens. Phys. Rev. B 72, 104 426 (2005).
- [24] S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, V.A. Ryzhov, H. Szymczak, R. Szymczuk, M. Baran. J. Phys.: Cond. Matter 17, 6495 (2005).
- [25] S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, R. Szymczak, M. Baran. J. Phys. Chem. Sol. 67, 675 (2006).
- [26] J. Salafranca, L. Brey. Phys. Rev. B 73, 214404 (2006).
- [27] С.В. Труханов, В.А. Хомченко, Л.С. Лобановский, М.В. Бушинский, Д.В. Карпинский, В.В. Федотова, И.О. Троянчук, А.В. Труханов, С.Г. Степин, R. Szymczak, С.Е. Botez, А. Adair. ЖЭТФ 130, 457 (2006).
- [28] S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, H. Szymczak. Solid State Phenomena 128, 187 (2007).
- [29] S.V. Trukhanov, A.V. Trukhanov, C.E. Botez, A.H. Adair, H. Szymczak, R. Szymczak. J. Phys.: Cond. Matter 19, 266 214 (2007).
- [30] H. Aliaga, D. Magnoux, A. Moreo, D. Poilblanc, S. Yunoki, E. Dagotto. Phys. Rev. B 68, 104 405 (2003).
- [31] Y. Ueda, T. Nakajima. J. Phys.: Cond. Matter 16, S 573 (2004).
- [32] С.В. Труханов. ЖЭТФ 128, 597 (2005).
- [33] K.S. Shankar, S. Kar, G.N. Subbanna, A.K. Raychaudhuri. Solid State Commun. 129, 479 (2004).
- [34] С.В. Труханов. ЖЭТФ 127, 107 (2005).
- [35] S.V. Trukhanov, I.O. Troyanchuk, V.V. Fedotova, V.A. Ryzhov, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak. Phys. Stat. Sol. (b) 242, 1123 (2005).
- [36] S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, H. Szymczak, R. Szymczak, M. Baran. J. Low Temp. Phys. 139, 459 (2005).
- [37] В.В. Перекалин, С.А. Зонис. Органическая химия. Просвещение, М. (1966). С. 135.
- [38] I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak, K. Bärner. J. Phys.: Cond. Matter 12, L 155 (2000).
- [39] С.В. Труханов, И.О. Троянчук, Н.В. Пушкарев, Г. Шимчак. ЖЭТФ 123, 128 (2003).
- [40] S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, H. Szymczak. J. Phys.: Cond. Matter 15, 1783 (2003).
- [41] J.M. Gonzalez-Calbet, M. Parras, J.M. Alonso, M. Vallet-Regi. J. Solid State Chem. 106, 99 (1993).
- [42] S.V. Trukhanov, I.O. Troyanchuk, M. Hervieu, H. Szymczak, K. Bärner. Phys. Rev. B 66, 184 424 (2002).
- [43] H.M. Rietveld. J. Appl. Crystallogr. 14, 65 (1969).
- [44] C. Zener. Phys. Rev. 82, 403 (1951).
- [45] P.-G. De Gennes. Phys. Rev. 118, 141 (1960).
- [46] L.M. Rodriguez-Martinez, J.P. Attfield. Phys. Rev. B 58, 2426 (1998).
- [47] R. Mahesh, M. Itoh. Phys. Rev. B 60, 2994 (1999).
- [48] E.O. Wollan, W.C. Koehler. Phys. Rev. 100, 545 (1955).
- [49] Д.П. Козленко, С.В. Труханов, Е.В. Лукин, И.О. Троянчук, Б.Н. Савенко, В.П. Глазков. Письма в ЖЭТФ 85, 123 (2007).
- [50] H. Fujishiro, M. Ikebe, Y. Konno. J. Phys. Soc. Jpn. 67, 1799 (1998).
- [51] J.B. Goodenough. Phys. Rev. 100, 564 (1955).
- [52] J.B. Goodenough, A. Wold, R.J. Arnot, N. Menyuk. Phys. Rev. 124, 373 (1961).
- [53] P. Dey, T.K. Nath. Phys. Rev. B 73, 214425 (2006).
- [54] N. Das, P. Mondal, D. Bhattacharya. Phys. Rev. B 74, 014410 (2006).